CRUISE REPORT NO. 49
of PE/SI. 12/T. 1 and
PE/SI. 14/T. 1

10 March 1981

CRUISE: REDOR'I

SOLOMON ISLANDS OFFSHORE SURVEY

Cruise SI-81(1)

7-21 January 1981
by

W Gayman

Prepared for:
COMMITTEE FOR CO-ORDINATION OF
JOINT PROSPECTING FOR MINERAL
RESOURCES IN SOUTH PACIFIC
OFFSHORE AREAS (CCOP/SOPAC)
WORK PROGRAMME CCSP-1/SI. 12
AND CCSP-1/SI. 14

As a contribution by:
UNDP Project Office
Project RAS/79/074
Investigation of
Mineral Potential of
the South Pacific

SOLOMON ISLANDS OFFSHORI: SURVI:Y
7-21 January 1981
CRUISE SI-81(1)

CRUISE REPORT NO. 49
of PE/SI. 12/T. 1 and
PE/SI. 14/T. 1

INTRODUCTION AND BACKGROUND

This cruise was undertaken as part of the CCOP/SOPAC Work Programme CCSP-1/SI. 12 (Survey of deep sea areas south of the Solomon Islands to investigate the possible occurrence of manganese nodules), and CCSP-1/SI. 14 (The potential of precious corals especially Corallium species in the Solomon Is lands).

The cruise initiated the programme of reconnaissance sampling for manganese nodules in the Solomon Island waters and extended the reconnaissance investigation of the precious coral potential begun in 1979 in the Solomon Islands (CCOP/SOPAC Cruise Report No. 38). The latter reconnaissance comprised 67 dredge stations in the main group of the Solomon Islands. Corallium was recovered at 14 stations.

Marine basin areas south of the Solomons are deep enough for the formation of manganese nodules, if terrigenous and volcanic sediments are not being deposited so rapidly that they prevent their growth. Sedimentation rates near those active island chains are probably too high to allow any of the deep sea areas to be regarded as prospective. A possible exception is the basin southwest of the Santa Cruz Islands, which is deep, comparatively large, and cut off from most sources of sediment supply by the Solomons and New Hebrides Trenches.

A summary cruise \log is given in the Cruise Narrative, Appendix II, at lached.

References:
Eade, J V, 1980: Review of precious coral in CCOP/SOPAC member countries, CCOP/SOPAC Technical Report 8

Eade, J V, 1980: Solomon Island Offishore Survey, 10 October-25 November 1979, CCOP/SOPAC Cruise Report No. 38.

CRUISE OBJECTIVES

The cruise was designed to carry out preliminary surveys for manganese nodules in the Santa Cruz Basin, to the south of Guadalcanal, and for precious coral in the Santa Cruz Islands which is located well to the east of the main Solomon Island group.

The cruise plan called for the sea floor photography and the sampling for manganese nodules at 5 stations in the Santa Cruz Basin in depths of approximately 5000 metres.

The search for precious corals was planned for six areas where existing data suggested that suitable bathymetry and strong currents would favour the growth of precious corals. Bathymetric profiling would better define sampling areas, and tangle net dredging in water depths of $150-500 \mathrm{~m}$ would sample coral assemblages. Bottom photography would characterize sea floor conditions and organic assemblages where precious coral was found.

PERSONNEL PARTICIPATING

W Gayman: Chief Scientist, UNDP Marine Scientist
S Motuiwaca: UNDP Geological Technician
C Midobatu: Geological Chemist, Solomon Islands Division of Geology C Daga: Fisheries Assistant, Solomon Islands Division of Fisheries.

EQUIPMENT AND FACILITIES

Magnavox 1102A Satellite Navigation system;
Raytheon PTR-106C-1 7 kHz echo sounder;
EPC Model $46 \stackrel{0}{0} 0$ graphic recorder;
Benthos 12 kHz pinger system;
Benthos deep water wireline camera with flash;
Benthos Boomerang Grab (BBG) ;
Kennecott Free-fall cameras ;
Kennecott Free-fall grab, modified for wire line use;
Gravity corer (core barrel 60 cm long)
Large Van Veen grab;
Hand Van Veen grab provided by D Cronan;
Pipe dredpe;

```
Coral tangle nets;
OAR submersible flashers;
OAR transmitters;
OAR Auto direction finder ADF-210.
```

The Satellite Navigator was supplemented by the ship's radar for position fixing in the nearshore areas.

Logistical support was provided by the Government of the Solomon Islands through the offices of the Geological Survey.

> Equipment lost: except for two sets of tangle nets and tangle net weights.

Comments on Equipment

Good bottom echos were not always obtained on the EPC in deepwater. This may have resulted from poor operator techniques, poor reflective bottom conditions, or electronic problems. However, a subsequent electronic check found the instrument to be in good order.

Some of the ballast obtained for the Benthos Boomerang Grab (BBG) was found not to pack with sufficient density to give the required negative buoyancy to the instrument. It is recommended that only scrap washer centre plugs or similar material be provided in future.

The Ocean Applied Research (OAR) transmitter-receiver system used to locate the freefall instruments after they re-surface did not work satisfactorily. Subsequently, a new direction receiver has been placed on board. Because of an improved antenna arrangement this is expected to work much better.

It was felt that the MACHIAS was not well suited for precious coral dredging or other shallow water work where very steep bottom slopes are encountered. This conclusion was based largely on the layout of the navigation equipment (i.e. the plotting table, radar, and echo sounder), which makes the rapid plotting of radar fixes and bottom depths rather difficult.

PRELIMINARY RESULTS

A. Manganese Nodules

Attempts were made to collect manganese nodules from 6 stations located about 10 to 15 miles apart in the 5000 m deep Santa Cruz Basin (Figure 1). One free-falling Benthos Boomerang Grab (BBG) sampler was dropped at each station. No manganese nodules were found. At 3 stations small pumice pebbles were collected, and at 4 stations samples of the light brown muds were recovered.

In addition, a Kennecott Free fall camera (KFFC) was dropped at 4 stations. However, bottom photos were obtained from only 2 stations, MN-41 and MN-46. These photos show considerable evidence of organic activity (i.e. organism tracks, holes in the bottom, and mounds, and other bottom irregularities). Some of the small lumps of the bottom could be interpreted as manganese nodules covered with sediment. However, it seems more likely that the lumps are of organic origin, or are pumice pebbles covered with sediment. It is concluded that the bottom photographs show no evidence of manganese nodules in the sampling area.

The sampling and bottom photos suggest there are few, if any manganese nodules in the Santa Cruz Basin. For this reason, and because of other geological considerations (i.e. close proximity to land and probable relatively high rates of sedimentation) it is recommended that no further exploration for manganese nodules should be undertaken in this area.
B. Precious Coral

On this leg of the MACHIAS cruise, as on Leg 3 (VA-80-3), most of the areas outtlined for precious coral exploration were much too deep for the 500 m maximum depth limit specified for field exploration. Therefore these areas were generally disregarded. The search around each island was carried out by heading the ship directly or obliquely toward the shore and running in to 125 m depth, or to some deeper point where the Captain thought it was prudent to turn; then the ship was headed seaward, directly or obliquely.

If any flat or gently sloping bank or terrace was discovered on the inshore run, attempts were made on the outbound run to drop the tangle net on the feature. Many areas that were not sampled, and areas where no samples were collected in the tangle net, were characterised by very steep slopes. Very few banks, torraces, or areas of gentle slope were discovered within the target depth range.

The tangle net was dropped at 40 stations in the Santa Cruz 1 sland, at depths ranging from 150 to 500 metres (1igure 2). Coral and/or gorgonia samples were collected at 31 of these stations. At 9 stations no coral or gorgonia samples were found; in 2 of these cases, the absence of a sample was due to the loss of the tangle net. The results of the collection are summarized in Table 1 of Appendix I attached.

None of the samples collected in the Duff Islands, and in the vicinity of Utupua and Tinakula were thought to include corals species which are commercial value.

Coral species of possible commercial value were collected on the southeast side of Vanikolo lsland (3 stations: 2, 4 and 6) on the southeast side of Ndendi Island (5 stations: 12, 13, 15, 16 and 19); off the northwest side of Ndendi Island (2 stations: 23 and 24), and near the west end of the Great Reef (1 station: 31) in the Reef Islands.

Seven of the 10 most attractive samples represent all or part of the 200 to 300 m depth range, two samples were collected from the $400-500 \mathrm{~m}$ depth range, and one was from the $100-200 \mathrm{~m}$ depth range.

Selected samples of the better quality coral and gorgonia will be submitted to a qualified marine biologist for positive identification, and an assessment of the value of the coral species collcoted. The results of the tangle netting programme should be considered highly tentative until the results of such an examination has been obtained.

C. Bathymetry

Over 1100 nautical miles of bathymetric track data was recorded between Port Vila and Honiara, and in the Santa Cruz 1slands (see Figures 3, 4, and 5).

CONCLUSIONS AND RECOMMENDATIONS

Free fall grab sampling and bottom photography at 6 stations in the 500 m deep Santa Cruz Basin.has failed to produce any evidence of manganese nodules. For this reason, and because of the relatively close proximity of the area to land, and sources of sediment, no further exploration for manganese nodules is recommended in this region.

It is possible that some of the deepwater corals collected in 4 areas of the Santa Cruz Islands may be of the same species as those found elsewhere in the Pacific which have commercial value. llowever, any recommendations with regard to further exploration must await the identification and evaluation of the samples by Dr R Grigg, the UNDP's precious coral consultant.

WORK REMAINING

Selected samples of the corals collected are being sent to Dr R Grigg of the University of Hawaii for examination, identification and comment.

Eight samples of calcareous crust collected from the tangle net stations in the Santa Cruz Islands are being tested for their prosphorite content.

CRUISE NARRATIVE

The MACHIAS left Port Vila at $0548 z$ on January 7, 1981, bound for the Santa Cruz lslands (all times and dates are GMT unless otherwise stated). A course was chosen to the west of the New Hebrides in order to provide a new track, and to avoid the hazardous steaming between the islands during periods of darkness. At about 1500 on January 7 bottom was gradually lost on the echo sounder (LEPC). Presumably this loss was due to the great depth (over 3000 m) and to rough topography. Bottom echoes were lost on the echo sounder several times for up to $2-4$ hours at a time during the following 24-hour period.

On January 9, 1981, at 1930 the MACHIAS arrived off the south shore of Vanikolo Island, the first planned sampling area in the Santa fruz Islands.

The initial bathymetry suggested that all or most of the planned sampling area was deeper than the 500 m which is the lower depth limit set for the tangle netting operations. (Later this was found to be also true for most of the other sampling areas.) Consequently, it was decided to proceed counter clockwise around Vanikolo Island, making bathymetric runs, and dropping the tangle net in the areas that appeared relatively attractive. Seven tangle net stations were occupied off the south, east, and north coasts of Vanikolo Island. Most of the offshore slopes of the island are too steep for easy tangle netting.

Beginning at about $1800 z$ the MACHIAS commenced bathymetry in a clockwise direction around Utupua Island. Slopes were extremely steep, so that the MACHIAS had to come very close to the reef to reach depths as shallow as 150-200m. The Captain suggested that the continuous sawtooth pattern begun around the island was too hazardous to continue, without interruption. For this reason, 3 mile legs parallel to shore were added to the track plan between the dangerous inshore runs. All of the slopes around Utupua were extremely steep. Nevertheless 4 sample stations were occupied. During the night the MACHIAS moved somewhat closer to Ndende.

A sampling and bathymetry programme off the south and east coasts of Ndende commenced about $1800 z$ on January 11. Relatively shoal waters were found to the east of Ndende and bottom slopes were consideraly less steep than those off Utupua and Vanikolo. Nine stations were occupied. During the evening the MACHIAS proceeded clockwise around the south coast and thence to the northwest coast of Ndende.

Sampling and bathymetry commenced at about 1830 J January 12 off the northwest coast of Ndende. It was determined that a shoal area marked on the chart as being adjacent to tidal rips, did not exist, at least not in the area where it was mapped. Some slopes were steep, but several irregular bottom areas found were considered suitable for tangle netting. Very swift currents were encountered close to the shore just north of Te Motu Island. After seven sample stations were occupied in this area, the MACHIAS proceeded northward to Tinakulu Island. It was found that the currents around the island were swift, and the bottom slope was very steep. One tangle net station was attempted, but the material collected was void of precious coral. During the night the MACHIAS cruised northward toward the Reef Islands.

At about $1800 z$ on January 13 bathymetry and sampling commenced off Nuk apu Island in the Reef Island group. Because of the very steep slopes only 2 stations were occupied. The MACHIAS then proceeded south around the West Point of the Great Reef, making bathymetry runs and occupying another 4 stations. During the night the MACHIAS proceeded about 75 nautical miles to the eastward to the Duff Islands.

Bathymetry and sampling in the Duff Islands began about 1900 on January 14 and was continued for about $11^{\frac{1}{2}}$ hours. Six stations were occupied. Bottom slopes were very steep. No conventional fringing reef was found on the southwest side of the Duff lslands. An uncharted offshore ridge was found to extend well to the southeast of the island chain, at least for several miles. There was no manifestation of this ridge on the surface (i.e. discoloured water or breaking waves), but everywhere the ridge rose to depths shallower than 100 meters. This prevented the MACHIAS from easily obtaining access to the northeast side of the Duff Island Chain.

The tangle netting programme in the Santa Cruz Islands ended when the MACHIAS turned to the westward, at $0630 z$ on January 15. As the MACHIAS moved into water in excess of 2000 metres the bottom was frequently lost on the echo sounder record.

At 2300 on January 16 the MACHIAS arrived at the first manganese nodule station in the Santa Cruz Basin. The freefalling Benthos Boomerang Grab (BBG) was launched and later the Kennecott Free fall Camera (KFFC). Both were recovered $4-5$ hours later. After spending about $5 \frac{1}{2}$ hours on station, the MACHIAS moved to the next station. At the second station (MN-42) the BBG and the KFFC were launched again, but the KFFC failed to trigger when the ballast was dropped. Also it was concluded that the radio location system was not working well enough to be useful.

