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PREFACE 

It has become increasingly clear that the collection and analysis of 
fisheries data must be an integral part of all fisheries development 
programmes. In response to this requirement, the Asian Development Bank 
and the South Pacific Commission organized a training course on fisheries 
statistics held at SPC headquarters in Noumea, New Caledonia, from 3 to 14 
September 1984. The Asian Development Bank provided the major part of the 
funding for the course and financed the costs of the two instructors, 
travel and per diem costs of eleven trainees, and the publication of this 
manual. Travel and per diem costs of four participants were provided by 
the Fiji regional office of FAO/UNDP (South Pacific Regional Fisheries 
Development Programme), together with the donation of scientific pocket 
calculators for course participants. The Government of France funded the 
participation of three participants. The preparation and conduct of the 
course was assisted by Dr Paul J. Hooker, whose services as a consultant 
were kindly provided by the Indo-Pacific Tuna Development and Management 
Programme of FAO. Support facilities, secretarial services, computer 
resources and participation by staff of the Tuna and Billfish Assessment 
Programme as part-time intructors were provided by the SPC. 

The course was attended by 21 trainees from the fisheries divisions of 
16 different countries of the SPC. These people are all involved to some 
degree in handling fisheries statistics in their home countries. The 
course was uniformly judged by the participants to have been useful and of 
assistance in the conduct of their normal work load, and some sort of 
follow-up activity was requested. The publication of the lecture notes is 
one of the follow-up activities that is to be conducted. 

As part of their activities, the two instructors, Mr Peter Hodgkinson, 
former SPC Statistician and Dr Meryl Williams, former Fisheries 
Statistician with the Tuna and Billfish Assessment Programme, prepared a 
set of lecture notes for the course. These notes form the basis ior an 
elementary foundation in general statistics and are unique in their 
extensive use of fisheries data in the examples. It is partly due to this 
heavy use of fisheries examples which contributed to the success of the 
training course and which makes the lecture notes a valuable reference for 
workers in fisheries offices of the region. In preparing the notes, the 
authors have freely complemented their own thoughts and ideas with extracts 
from two previous SPC statistical publications authored by Mr. G.J. Eele 
(Eele 1982a, 1982b)l, and a report published by the FAO/UNDP South China 
Sea Fisheries Development and Co-ordinating Programme on a similar training 
course on fishery statistics held in Thailand in 19812. 

1 Eele, G.J. (1982a). Statistical operations and procedures (elementary 
level) lecture notes. South Pacific Commission, Noumea, New 
Caledonia. 

Eele, G.J. (1982b). Statistical operations and procedures (interme­
diate level) lecture notes. South Pacific Commission, Noumea, New 
Caledonia. 

2 Hooker, P.J. (1982). Report on the regional training course on fishery 
statistics, 1 September - 9 October 1981, Samutprakarn, Thailand. 
SCS/82/GEN/41a, Part II, Technical Report, Volume 2. South China Sea 
Fisheries Development and Coordinating Programme, Manila, 
Philippines. 
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TOPIC 1 - INTRODUCTION : WHAT ARE FISHERIES STATISTICS 

In this course we will be discussing some of the basic techniques used 
in collecting, presenting and analysing fisheries statistical data. But in 
this introductory topic, we will talk briefly about why we collect 
fisheries statistics, what types of statistics are collected by and for a 
fisheries statistical system, the types and levels of detail needed for 
some of these data and some possible types of statistics collections. 
Following this short introduction to the world of fisheries statistics, we 
begin the part of the course which is concerned with detailed studies of 
basic statistical methods which can be applied to fisheries data. 

1.1 Components of a national fisheries statistical system 

F i s h e r i e s s t a t i s t i c s a r e e s s e n t i a l to f i s h e r i e s managers and 
sc i en t i s t s a l ike . A government f i sher ies department col lec ts a wide range 
of types of f i sher ies data, from s c i e n t i f i c to socio-economic d a t a . We 
briefly examine the whole range of types of s t a t i s t i c s which come under the 
control of a government f i sher ies department . Not every department , of 
course, w i l l deal with a l l t y p e s . In each category of s t a t i s t i c s , we 
mention whether we would normally expect to c o l l e c t a census of t h e 
s t a t i s t i c s or just a sample. 

Domestic large-scale fishing 

Census s t a t i s t i c s on l a r g e - s c a l e f i sh ing are usua l ly gathered by 
d e t a i l e d catch r e p o r t s and by l a n d i n g d a t a r e t u r n s . Examples a r e 
pole-and-line, purse-seine and longline opera t ions for tuna and t r awl ing 
for prawns and f i sh . In the case of logsheet data, we may have to process 
the data by computer since the amount of de ta i l i s l a rge . 

Foreign large-scale fishing 

Census s t a t i s t i c s are collected under government-to-government access 
agreements . Deta i led process ing of the l ogshee t s i s c a r r i e d out on 
computer at the South P a c i f i c Commission (SPC), but some p re l imina ry 
s t a t i s t i c s should be recorded in-country. 

Domestic small-scale commercial fishing 

Sample or census logbook statistics are collected from fishing units 
and/or from landings. Examples are local deep-bottom fishing, trolling for 
pelagic species, and shell collecting for export. 

Local artisanal and subsistence fishing 

Sample surveys are conducted, usually by fisheries officers, to 
estimate catch and effort. Careful planning, recording and analysis of the 
samples is required. The estimates of non-commercial catch are often quite 
imprecise and some of the difficulties involved in making catch estimates 
are discussed in this course. 

Market statistics 

Economic data on market sales, costs, profits and number of operators 
for the commercial fish catch should be collected where possible. 
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Export s t a t i s t i c s 

Values and q u a n t i t i e s of f i s h and f i s h p r o d u c t s e x p o r t e d shou ld be 
moni tored. 

Import s t a t i s t i c s 

Q u a n t i t i e s of f r e s h , f r o z e n and p r o c e s s e d f i s h p r o d u c t s impor t ed 
should be known, e s p e c i a l l y wi th a view to s u p p l a n t i n g some i m p o r t s w i t h 
loca l p roduc t s . 

Fish consumption s t a t i s t i c s 

The q u a n t i t i e s and types of f i s h and f i s h e r y p r o d u c t s consumed i n a 
c o u n t r y a r e of c o n s i d e r a b l e i n t e r e s t i n p l a n n i n g f o r d e v e l o p m e n t of 
f i s h e r i e s and f i she ry f a c i l i t i e s , e . g . p rocess ing p l a n t s , and in d e f i n i n g 
t h e r o l e of f i s h p r o d u c t s in economic and n u t r i t i o n a l t e r m s . F i s h 
consumption s t a t i s t i c s may be o b t a i n e d from h o u s e h o l d s u r v e y s , c a t c h , 
import and export s t a t i s t i c s . 

Research and survey r e s u l t s 

A government f i s h e r i e s s t a t i s t i c i a n shou ld be f a m i l i a r w i t h t h e 
r e s u l t s of r e sea rch and survey data on f i s h e r i e s in the country and , where 
p o s s i b l e , should be given copies of the r e s u l t s to supplement r o u t i n e d a t a 
c o l l e c t i o n s . Deta i led r e sea rch and survey programmes can help expla in some 
bas i c obse rva t ions on changes in the s t a t u s of s tocks which may have been 
noted in r o u t i n e ca tch and e f f o r t s t a t i s t i c s . 

Aquaculture 

Pond s i z e s , equipment, c a p i t a l o u t l a y , employment and p r o d u c t i o n d a t a 
are bas ic to moni tor ing the progress of aquacul tu re p r o j e c t s . A census of 
aquacu l tu re data should be a t tempted . 

Fishing v e s s e l s 

F i s h e r i e s d e p a r t m e n t s f r e q u e n t l y a r e r e s p o n s i b l e f o r l i c e n s i n g 
commercia l f i s h i n g v e s s e l s and k e e p i n g e s t i m a t e s of t h e n u m b e r s of 
non -commerc i a l v e s s e l s i n v o l v e d in f i s h i n g . Even i f t h e f i s h e r i e s 
department i s not r e s p o n s i b l e f o r l i c e n s i n g of v e s s e l s , t h e f i s h e r i e s 
r t a t i s t i c i a n shou ld be f a m i l i a r w i t h c u r r e n t i n f o r m a t i o n on f i s h i n g 
v e s s e l s . In some c a s e s , the s i z e s , numbers and t y p e s of b o a t s used f o r 
f i sh ing may have to be determined by household and v i l l a g e sample surveys . 

Data on fishermen 

Often the number of commercial fishermen i s easy to determine b e c a u s e 
such f i s h e r m e n u s u a l l y have t o be l i c e n s e d . A l t e r n a t e l y , we may g e t 
e s t i m a t e s of numbers from marke t s a l e s . D e t e r m i n i n g t h e n u m b e r s of 
non-commerc ia l f i s h e r m e n , however , i s more d i f f i c u l t , b u t f i s h e r i e s 
departments f requent ly are r e s p o n s i b l e for sample e s t i m a t e s of numbers of 
p e o p l e i n v o l v e d in f i s h i n g . In c o n j u n c t i o n w i t h o t h e r g o v e r n m e n t 
depar tments , f i s h e r i e s departments of ten carry out s o c i o - e c o n o m i c s t u d i e s 
of people involved in f i s h i n g so t h a t t h e v a l u e of f i s h i n g i n economic , 
employment and n u t r i t i o n a l terms may be unders tood. Socio-economic s t u d i e s 
usua l ly a re c a r r i e d ou t by h o u s e h o l d s u r v e y s , e . g . t h e 1981 su rvey of 
a r t i s a n a l f i sh ing in South Tarawa (Anon 1 9 8 2 ) , t h e 1981/82 s tudy of t h e 
s t a t u s of women in f i s h e r i e s a c t i v i t i e s in F i j i (Lai and S l a t t e r 1982). 
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1.2 Why c o l l e c t f i s h e r i e s s t a t i s t i c s 

Before examining the problems of which s t a t i s t i c s t o c o l l e c t and how 
to go about c o l l e c t i n g them, we might ask the ques t ion - why do we c o l l e c t 
f i s h e r i e s s t a t i s t i c s ? 

The u s e s of f i s h e r i e s s t a t i s t i c s may be c l a s s i f i e d a s f o r 
(a) assessment , (b) moni to r ing , or ( c ) p l a n n i n g and management . Wi th in 
each category we have s c i e n t i f i c , economic and s o c i o - e c o n o m i c f i s h e r i e s 
s t a t i s t i c s . In note form, we may summarise t h e u s e s of v a r i o u s t y p e s of 
f i s h e r i e s s t a t i s t i c s i n t h e f o l l o w i n g way. Many of t h e ways in which 
f i s h e r i e s s t a t i s t i c s may be used w i l l be s e e n i n g r e a t e r d e t a i l i n 
fol lowing sec t i ons of the course . 

1.2.1 Assessment 

Scientific: 

Data types: catch and effort, length frequency, species composi­
tion and catch rates, biological samples 

Uses: - assessment of current status of stocks 
- potentials of new fishable stocks 

determination of biological parameters of populations, 
e.g. recruitment, reproduction, age structure 

Economic: 

Data types: landing data, market, import, export, consumption, 
vessel, gear, employment, foreign and local catch 
and effort statistics 

Uses: - to calculate values of catch, catch per unit 
effort, vessels and gear, import, export and 
domestic revenue 

- to determine employment and occupational involve­
ment in fisheries 

to calculate revenue and fees for foreign fisheries 
operations 

Socio-economic: 

Data types: national census, sample and household surveys 

Uses: - to determine employment and occupational importance 
of fishing to members of the population 

to assess the nutritional importance of fish and 
fishery products 

1.2.2 Monitoring 

Scientific: 

Data types: time series of data types given in section 1.2.1 
(Scientific: Data types) 



4 

Uses: - changes in status of stocks 
effects on catch per unit effort due to interac­
tion of different fisheries 

- changes in biological parameters 
changes in fishing techniques and consequent 
effects on catches 

Economic: 

Data types: time series of data types given in section 1.2.1 
(Economic: Data types) 

Uses: - to monitor changes in values of catch, catch 
per unit effort, vessel values, etc. 

to monitor employment and occupational involve­
ment in fisheries 

to monitor returns in revenue from foreign 
fishing interests 

Socio-economic: 

Data types: time series or periodic updates of data types 
given in section 1.2.1 (Socio-economic: Data 
types) 

Uses: - to monitor changes in occupational importance 
of fishing 

to monitor changes in nutritional importance 
of fishery products 

1.2.3 Planning and management 

The end result of conclusions drawn from assessment and monitoring 
information is the input to planning and management of fisheries and 
fishing related enterprises. 

Scientific: 

Uses: - regulation of fishing operations for conserva­
tion of stocks 

development of new fisheries and techniques 

Economic: 

Uses: - planning of capital expenditure on vessels, 
ports, landing facilities, processing 
plants, etc. 

regulation of fishing operations for economic 
reasons 

- calculation of access fee levels for foreign 
fishing 

Socio-economic: 

Uses: - development of employment and occupational 
fishing projects 

regulation of fisheries based on social 
considerations 
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1.3 What fisheries data should be collected 

In this section, we will discuss the form of data related specifically 
to fishing operations. Other forms of fisheries statistics listed in 
section 1.1, e.g. market, import, export, socio-economic and aquaculture 
statistics, are similar in their form and method of collection to many 
other types of non-fisheries related statistics, e.g. agricultural, 
income, educational. The collection and analysis of fisheries statistics 
not related to fishing operations are dealt with more generally in Topic 6 
on sampling. The form and collection of data related to fishing 
operations, however, present features peculiar to fishing and to no other 
activity and an introduction to some of these features is now given. 

In all fisheries a basic set of fisheries catch statistics is needed 
to satisfy the routine requirements of government fisheries departments in 
regard to research, stock assessment and economic management. The 1981 
ICLARM/CSIRO Workshop on the Theory and Management of Tropical Multispecies 
Stocks (Pauly and Murphy 1982) identified the following requirements: 

- Reliable catch by species and associated effort data. 

- Length composition by species or, if appropriate, by groups of 
species. Where discarding of part of the catch at sea is known 
to occur, it will be necessary to sample discards for length 
composition as well as by species to enable conversion of 
length composition of landings to length composition of catch. 

Indices of abundance calculated from records of catch and 
effort and expressed in units of catch per unit of standardised 
fishing effort. Research vessels or selected commercial 
vessels may be used for this purpose. 

- Related to these data requirements is the problem of obtaining 
satisfactory species identification. With the large number of 
species, special efforts are needed to provide field workers 
with easily used taxonomic aids. 

- Age composition of selected species as a basis for using 
standard techniques of assessment and for calibrating 
length-structured models. 

Except perhaps in the cases of large-scale foreign and domestic 
fisheries, even basic data requirements for many fisheries may be difficult 
to meet in the Pacific since: 

- A large number of different species are caught. 

A wide variety of fishing techniques are used, often including 
several different techniques for the same species. 

The subsistence and artisanal catching sectors are extremely 
important and in some cases commercial fishing is almost 
negligible. 

- Fishing is usually done by a large number of small fishing 
units. 
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The requirements for trained manpower to collect statistics 
from remote atolls, islands and villages are often prohibitive. 

Small-scale fishing methods may vary considerably with time of 
day, phase of moon, season, food and money needs of the people 
involved, etc. 

1.3.1 Catch data 

Catch data, by species of fish, may be collected directly from the 
fishing units, e.g. individual vessels or fishermen, and/or in aggregated 
form as landings of fish. 

Data collected directly from fishing units, e.g. on catch reports or 
logsheets, will be much more detailed than aggregated landing data. 
However, the accuracy of data reported directly from fishermen needs to be 
checked. Catch report forms must be well designed and accompanied by clear 
instructions on how to fill them in. In addition, fisheries officers must 
rely on fishermen being able to identify fish species accurately and to 
record weights, numbers, positions of catch, etc. carefully. 

Fish landings are useful for estimating total catch and for 
cross-checking detailed logsheet data. In addition, species composition of 
the catch may be more accurately determined from landing data. For 
example, small yellowfin and bigeye tuna caught by purse-seiners are very 
difficult to tell apart and catch reports filled out on board fishing 
vessels often lump the two species as "yellowfin". On landing, however, 
greater care is taken to distinguish the species because they are sold for 
different prices. 

The problem of which species to record as separate species and which 
to record as groups of species or as "other species" must be considered 
carefully. Species which are to be recorded separately must be able to be 
identified accurately and must make up a measurable fraction of the catch. 
In tropical fisheries, the diversity of species is often large and no small 
number of species dominates the catch. For example, Munro (1982) reported 
that in a trap fishery in Jamaica, 35 species each comprised at least 1.5 
per cent of the catch by weight. 

One approach to the species problem is to combine all species of one 
biological group, e.g. deep water snappers (Etelis spp.), parrotfish 
(Scarus spp.), groupers (Epinephalus spp.), when collecting routine catch 
data and then to estimate the species composition of the group from a 
subsample of the catch only. Alternately, we may collect catch data for 
one or a few indicator species in each group and total catch for the group 
as a whole. In general, catch totals for the group only will not be 
sufficient since any changes in species composition within the group will 
be missed. An example of a typical breakdown of species and species groups 
is shown in Table 1.1. The species are all caught in a deep-bottom 
dropline fishery and a trolling fishery operating in the same general area. 
We see that the group of miscellaneous and minor species constitutes only 
three per cent of the catch. Three species are recorded as individual 
species and all others are put into family or sub-family groups. 

Special care must be taken to record the occurrence of species which 
may be only a minor component of one fishery but which are major or target 
species of other fisheries, e.g. yellowfin tuna in local troll fisheries 
and in large-scale tuna fisheries. Catch records of such species are very 
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Approximate 
Percentage 
of catch 
by weight 

12 
4 
14 
10 

8 
12 

15 
7 

3 
15 

important if we are trying to see whether the catches in the big fisheries 
are having any impact on catches in the smaller fisheries, i.e. if any 
interaction is occurring between the fisheries. 

TABLE 1.1 : AN EXAMPLE OF FISH CATCH COMPOSITION RECORDS - DEEP 
BOTTOM DROPLINE AND SURFACE TROLL FISHERIES 

Species/Group 

Etelis carbunculus (Deep-water red snapper) 
Pristipomoides auricilla (Gold tailed jobfish) 
Pristipomoides zonatus (Banded flower snapper) 
F. Lutjanidae, s-F. Etelinae (Other deep-water snappers) 
F. Lutjanidae, s-F. Lutjaninae : F. Lethrinidae (Shallow water 
snappers and emperors) 

F. Serranidae (Groupers) 
F. Carangidae : F. Scombridae : F. Thunnidae (Coastal pelagic 
species) 

Ruvettus pretiosus (Oilfish) 
F. Sphyraenidae : F. Scorpaenidae : F. Labridae : Unident. 
(Miscellaneous bony fish) 

F. Carcharhinidae : F. Hexanchidae (Sharks) 

Length-frequency distributions of the major species or of indicator 
species are of considerable value in monitoring the state of fish stocks. 
A sampling programme carried out at markets or landing sites or by research 
surveys is recommended. Provided sufficient samples are taken regularly, 
the size composition of stocks can be monitored for recruitment, change in 
sizes of fish taken and, in some cases, growth. Information on where the 
samples of fish were taken and what fishing gear was used must also be 
carefully recorded. 

1.3.2 Time and area details 

The amount of detail required in specifying time and area of catch is 
important when designing a data collection system for fisheries statistics. 

Time resolution is often straightforward because catch or landings are 
usually recorded by day or 1-2 day trip date. Greater precision on time of 
catch, e.g. hour of day or night, is more difficult to collect accurately. 

With respect to area of catch, the amount of precision we need or can 
obtain is determined both by the type of fishery and by the precision with 
which the fishing boats are able to report catch. Thus, in inshore reef 
fisheries we may be interested in knowing the area fished to within a few 
kilometres accuracy whereas in pelagic fisheries we may be satisfied with 
several tens of kilometres accuracy. 

In large-scale fisheries where vessels have good navigation 
instruments, fishing positions can readily be given in precise degrees and 
minutes. In such cases, computers can be used to produce graphic 
presentations of large amounts of detailed catch and effort data and to 
summarise the data in numeric form. 



In practice, in small-scale fisheries, exact fishing positions usually 
cannot be obtained. However, a local system for describing approxiate 
areas should be set up. For example, the waters surrounding a high island 
may be divided into discrete areas which represent different possible 
fishing areas (Figure 1.1(a)); an atoll with lagoon may be divided into 
lagoon plus several offshore areas (Figure 1.1(b)). Particular note should 
be taken of recording fishing around fish aggregation devices (FADs). 

FIGURE 1.1 : EXAMPLES OF ZONE AREAS AROUND ISLANDS 

(a) High Island (b) Atoll 

* indicates the site of a village 

If some navigation equipment is available to local vessels, a grid 
system may be set up, e.g. a 1/4x1/4 degree, or lxl degree grid system. 
Figure 1.2 shows a lxl degree grid system. 

FIGURE 1.2 : EXAMPLE OF lxl DEGREE GRID FOR NEW CALEDONIA 

1S4C 
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In general, the smaller the areas defined, the better the catch and 
effort data may be monitored, but the greater the difficulty in collecting 
and processing the data. 

1.3.3 Fishing units 

The fishing unit is defined as the smallest discrete, complete unit 
necessary for a fishing activity. The fishing unit varies from fishery to 
fishery but always consists of the fishing gear, persons (crew or fishermen 
and fisherwomen) and often fishing vessel or vessels. In some fisheries, 
the unit is obvious, e.g. in tuna longline fishing the unit is the 
longline vessel, crew and fishing equipment. In smaller fisheries the unit 
is not so clear, e.g. in shellfish gathering the unit may be one or more 
people and their collecting equipment. A table of common Pacific fishing 
methods and the fishing unit for each method is given in Table 1.2. 

Identification of fishing units is important when designing the 
collection of fisheries statistics and also in choosing the way in which to 
measure fishing effort. 

TABLE 1.2 : FISHING UNITS FOR SOME COMMON PACIFIC FISHERIES 

Type of Fishing 

Tuna longline 

Tuna pole-and-line 

Tuna single purse-seine 

Tuna group purse-seine 

Trolling 

Deep-bottom fishing 

Fishing Unit 

Longline vessel, crew and gear 

Pole-and-line vessel, crew and gear 

Purse-seine vessel, crew, gear and 
helicopter for locating fish 

Net vessel, skiff, carrier vessel(s), 
crew and gear 

Canoe/motor vessel, crew and gear 

Canoe/motor vessel, crew and gear 

Trap fisheries Canoe/motor vessel, crew and traps 
or Crew and traps if shore-based 

Spearfishing 

Gillnets, set nets, lift nets 
beach seines 

Cast netting 

Shellfish collecting 

Fishermen, spears and boat(s) 

9 

Fishermen, nets and boat(s) 

Single fisherman and net 

Collectors, equipment and boat(s) 

1.3.4 Fishing effort 

Catch data alone tells us little of the state of a fishery. For 
example, if the total catch of all reef fish is 50 tonnes in one month but 
only 10 tonnes in the next month, we have no way of knowing whether the 
drop in catch was due to reduction in available fish or to a drop in the 
amount of fishing, for whatever reason, carried out in the second month. 
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If we are to monitor the changes occurring in fisheries, therefore, we must 
measure or estimate not only the catch but the amount of fishing carried 
out. We quantify the amount of fishing by choosing a measure called a unit 
of fishing effort. depending on the fishing gear, skill and time required 
to catch fish. We require, therefore, some method for measuring the amount 
of fishing effort used by each fishing unit to catch fish. Ideally, the 
measure chosen should be such that catch is proportional to effort expended 
under given conditions. For example, if two people fish with lines in the 
same area on the same day, and one uses one line and the other uses two 
lines, we expect the person with two lines to catch about twice as much 
fish as the other since he/she is using twice the fishing effort. 

Fishing effort is measured in different ways for different types of 
fisheries. Table 1.3 gives the usual measures of effort for different 
fisheries. The recommended measures for each fishing method are marked 
with a (1). Often it is difficult to collect data for the best measure of 
effort in a fishery and instead a less ideal but more easily measured unit 
must be used. For example, in set net fisheries on a reef, we may easily 
find out the total number of sets but may less easily obtain data on the 
size of nets and on the actual catching time for each set. 

In practice, a unit of fishing effort can vary in effectiveness from 
fishing unit to unit and over time and area for the same unit. For 
example, 2000 longline hooks set for a standard period of time will vary in 
their success from time to time and from vessel to vessel. Several factors 
can cause variation in the effectiveness of a unit of fishing effort. 

(i) Learning and technological changes: 

In a new fishery, fishing skills and knowledge change rapidly 
over the first few years so that catches may improve with 
little apparent change in effort. The effective fishing 
effort is constantly changing as the fishermen become more 
skilful, but the measures of fishing effort, e.g. number of 
hours fished, number of sets made, will not show the changes. 

The effectiveness of a unit of fishing effort may also change 
when new fishing gear or fish-finding equipment is 
introduced, e.g. a new type of net, a motor added to a 
canoe, better navigation and depth-sounding equipment, or 
when changes occur in the method of fishing, e.g. fishing at 
different depths from the usual, using a different type of 
bait, setting a purse-seine on different types of tuna 
schools. 

(ii) Competition between units of gear: 

Physical competition exists when the setting of additional 
units of gear directly interferes with the gears already 
fishing, e.g. heavy fishing of a school of fish may disperse 
the school. If many boats fish in an area, each boat may 
catch less per unit effort than if only a few boats fished. 

(iii) Saturation of gears: 

Some types of fishing gear cease to fish effectively once a 
certain amount of fish have been caught, e.g. set longlines, 
fish and crab traps. 



TABLE 1.3 : FISHING EFFORT MEASURES 

Type of Fishing 

Deep sea 
handlines 

Deep sea 
longlines 

Reef, shore, 
gillnets, set 
nets 

Traps, pots 

Coastal pelagic 
- troll 

Oceanic -
tuna purse-seine 

Oceanic -
tuna pole-and-
line 

Oceanic -
tuna and billfish 
longline 

Gear Size/ 
Number 

** (1) 

*** (1) 

*** 

*** (i) 

*** (i) 

** 

** 

*** (l) 

Note: The preferred measure o 

Vessel 
Bait Size 

* 

* 

* 

* 

* 

* * 

* * 

f fishing effort 

Changing 
Actual Catching Searching Target 

Time Time Species 

*** 

(or 

*** 

(no. 

*** 

(no. 

*** 
(no. 

*** 

*** 

(no. 

*** 

(no. 
fis 

** 

(no. 
fis 

is mar 

(1) * 
no. of trips) 

(1) * 
of sets) 

(1) * 
of sets) 

(1) * 
of sets) 

(1) * 

(1) ** * 

of sets) 

(1) * * 
of days 
hed) 

(1) * 
of days 
hed) 

ked by (1). 

The degree of relative importance for each factor is shown by the number 
of asterisks (*). Three asterisks indicates that the factor is very 
important, two asterisks that the factor is moderately important 
and one asterisk that the factor is of low importance. 
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(iv) Co-operation between fishing units: 

A s ing l e f i sh ing un i t may be much more s u c c e s s f u l when 
fishing in co-operation with o ther u n i t s or when r e c e i v i n g 
information from other fishermen. In some cases, we may have 
to redefine our f i s h i n g un i t to account for c o - o p e r a t i o n , 
e.g. group purse-seiners . 

(v) Expansion of fishing areas: 

As a f i she ry expands to use new f i s h i n g g r o u n d s , t h e 
e f f e c t i v e n e s s of a f i s h i n g u n i t may be i n c r e a s e d as 
previously untouched stock are fished. 

(vi) Differences in skill between fishing units: 

Fishing skill is hard to measure, but differences between 
fishing units cause some of the greatest differences in 
effectiveness of units of fishing effort. Adjustments may be 
made by comparing the long-term catches of different fishing 
units to the catches of a standard research or survey unit or 
to a particular unit of the local fishery. For example, if a 
particular fishing team or group of teams habitually catch 
one and a half times as much fish as other teams, each unit 
of effort from the successful teams is effectively equal to 
one and a half times similar units of effort from the other 
teams. Such adjustments to units of fishing effort are 
difficult to carry out, however, and a large amount of 
detailed data analysis is required. 

Despite the care which must be taken in collecting fishing effort data 
and in using these data, fishing effort is still a very useful measure to 
have, both from the biological and socio-economic point of view. 

1.3.5 Using catch and effort data 

Catch and effort data are used by scientists, economists and planners 
as simple indicators of what is caught and how much effort is expended in 
fishing, and in calculations for stock assessment. 

At the most basic level, if we know any two of the three statistics, 
catch, effort and catch per unit of effort, we may estimate the third 
statistic. If we know total catch and have a sample of catch with effort 
data, we may estimate total effort, provided the sample is representative 
of the whole. Conversely, if we know total effort and have a sample of 
catch with effort data, we may estimate the total catch. The values for 
total catch and effort derived from samples will only be estimates of the 
actual (unknown) values. If neither total catch nor total effort is known, 
however, both may still be estimated by sampling, but the estimates will be 
approximations only. 

For the purposes of stock assessment, catch per unit effort (CPUE) is 
commonly used as an index of abundance of fish stocks. CPUE is calculated 
by dividing catch by effort, perhaps after first standardising effort. 
Unfortunately, CPUE will not always be proportional to fish abundance. 
Some of the factors that influence the relationship between catch and 
effort are: 
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(i) Multispecies fisheries: 

When more than one species is caught in a fishery, CPUE of 
any one species may not be a reliable measure of the 
abundance of that species. Where certain species are highly 
sought after and fishing practices target on the preferred 
species, CPUE may be a misleading indicator of abundance of 
all species. 

( i i ) S t a n d a r d i s a t i o n of e f f o r t : 

Ind iv idua l u n i t s of e f fo r t may need to be s t a n d a r d i s e d . If 
the measure of e f f o r t i s no t a t r u e measure of e f f e c t i v e 
f i sh ing e f f o r t due to varying s k i l l among f ishermen, changes 
in technology, e t c . , the measures of e f f o r t may have t o be 
adjus ted to make CPUE v a l u e s comparab le be tween t i m e s and 
a r e a s . 

( i i i ) Discards : 

U n d e s i r a b l e s p e c i e s and u n d e s i r a b l e s p e c i m e n s of t h e 
p re fe r r ed s p e c i e s , e . g . smal l , very l a r g e or damaged f i s h , 
may be d i s c a r d e d a f t e r c a t c h i n g . D i s c a r d s a r e r a r e l y 
r e c o r d e d in r o u t i n e f i s h e r i e s s t a t i s t i c s . The r e g i o n a l 
l ong l ine and pu r se - s e ine tuna catch r e p o r t s have columns f o r 
d i sca rds of tuna and o ther spec ies but no t a l l v e s s e l s f i l l 
in t h e co lumns . O b s e r v e r s aboa rd v e s s e l s have p r o v i d e d 
u s e f u l i n f o r m a t i o n on t h e e x t e n t of d i s c a r d s b u t s u c h 
information i s only a very small sample of t h e whole c a t c h . 
The Deep Sea F i s h e r i e s Development P r o j e c t a t t h e SPC keeps 
c a r e f u l r e c o r d s of f i s h d i s c a r d e d , e s p e c i a l l y where t h e 
spec ies of f i s h d i sca rded , e . g . o i l f i s h (Ruvettus p r e t i o s u s ) 
and some sha rks , have p o t e n t i a l as food s p e c i e s . In g e n e r a l , 
r e s e a r c h and su rvey programmes a r e r e q u i r e d t o p r o v i d e 
r e l i a b l e information on d i s c a r d s . 

( iv ) Changes in c a t c h a b i l i t y of f i s h : 

Changes in c a t c h a b i l i t y of f i s h due t o b e h a v i o u r a l and 
p h y s i o l o g i c a l f a c t o r s , e . g . s c h o o l i n g , r e p r o d u c t i o n , 
moulting in c r u s t a c e a n s , or t o e n v i r o n m e n t a l f a c t o r s , e . g . 
t e m p e r a t u r e , w i n d s , moon p h a s e , t i d e s , may c a u s e l a r g e 
f l u c t u a t i o n s in CPUE. Such f l u c t u a t i o n s , however , a r e no t 
i n d i c a t i v e of changes in abundance of the f i s h s tock . 

Take one fu r the r genera l obse rva t ion a t t h i s p o i n t , and t h i s i s t h a t 
the f requency d i s t r i b u t i o n of CPUE in many f i s h e r i e s i s skewed t o t h e 
r i g h t . A few f i s h i n g u n i t s have h igh CPUEs, b u t t h e m a j o r i t y h a v e 
r e l a t i v e l y low CPUEs. A t y p i c a l example i s the set of 210 l o n g l i n e b o a t s 
which f ished in one country over a three-month p e r i o d ( F i g u r e 1 . 3 ) . The 
CPUE ( t o t a l number of f i s h per day f i shed) for the b o a t s i s skewed t o t h e 
r i g h t . We w i l l look a t the p r e s e n t a t i o n of such data as these CPUE data in 
more d e t a i l in Topic 3 . 

1.3.6 Length frequency 

The uses of length frequency data are beyond the scope of the p r e s e n t 
course , but i t i s important to know t h a t good l e n g t h f r e q u e n c y d a t a a r e 
b e i n g i n c r e a s i n g l y used fo r s t o c k a s s e s s m e n t p u r p o s e s i n t r o p i c a l 
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fisheries. Workshop papers in the book on tropical multispecies fisheries 
edited by Pauly and Murphy (1982) may be referred to for further details. 

FIGURE 1.3 : FREQUENCY DISTRIBUTION OF CPUE FOR LONGLINE VESSELS 
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1.4 Collecting f i sher ies catch and effort s t a t i s t i c s 

Collecting accurate and re l i ab le f i s h e r i e s catch and e f fo r t data i s 
often d i f f icu l t due to the problems mentioned in s ec t i on 1 .3 . We j u s t 
b r i e f l y mention he re t h e n a t u r e of d a t a c o l l e c t i o n in l a r g e - and 
small-scale f i she r i e s . The collect ion of other f i sher ies s t a t i s t i c s , such 
as market s t a t i s t i c s and socio-economic data, is t reated in Topic 6. 

1.4.1 Large-scale domestic and foreign f i sher ies data 

A census or t o t a l c o l l e c t i o n of l a r g e - s c a l e domestic and fore ign 
f isher ies data should be a t t empted . A census r a t h e r than a sample i s 
possible since large-scale fishing is conducted by l a r g e , we l l -o rgan i sed 
fishing un i t s , capable of catching large quant i t ies of f ish and of keeping 
accurate records of such catches. 

Large-scale domestic ope ra t ions are commercial concerns which are 
usually licensed under government r e g u l a t i o n s and should be requ i red to 
provide complete catch and effort re turns . Good examples are seen in the 
region, e.g. the Papua New Guinea prawn f i she r i e s , the F i j i po l e - and - l i ne 
tuna fishery and the Tonga longline tuna f ishery. 

With respec t to fore ign f i sh ing o p e r a t i o n s , the fore ign a f f a i r s 
department of each country i s r e spons ib l e for agreements ensur ing t ha t 
fishing vessels provide catch and effort data. Fisheries access agreements 
usually include regulations on the type of catch reports to be used and how 
these are to be returned to the country fished. In prac t ice , some v e s s e l s 
may f a i l to comply with the regulations and we must r e l y on s u r v e i l l a n c e 
and law enforcement a u t h o r i t i e s to provide us with informat ion on the 
extent of the problem. 
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1.4.2 Small-scale fisheries 

By their very nature, small-scale fisheries present great difficulties 
with respect to data collection. In many Pacific countries, the 
subsistence and artisanal fisheries catches are of greater magnitude than 
commercial catches. A census of fish catch and effort in non-commercial 
fisheries requires a prohibitive amount of work. Estimates of total catch 
and effort, however, may be made with a regular sampling programme and/or 
by short-term, intensive surveys. 

The methods for designing sampling programmes are discussed in 
Topic 6. Such methods apply equally well to catch and effort estimates as 
to socio-economic statistics estimates, except that great care must be 
taken in considering all the possible sources of bias and variability 
affecting the sampling scheme. For example, how may we best sample 
sporadic or irregular types of artisanal fishing activity, or night 
fishing, or fisheries directed to spawning runs on certain lunar periods? 

Apart from sampling, another useful method of collecting highly 
specific data on fishing catch and effort is by the use of fisheries 
surveys. Fisheries surveys are systematic fishing activities designed to 
collect data on what types of fish are available and on what quantities of 
fish may be caught by certain gear types. Fisheries surveys may be carried 
out once only or they may be repeated at regular or irregular intervals as 
the need arises. In particular, exploratory surveys are often used to test 
catches in new fishing areas and/or using new types of fishing gear. The 
Deep Sea Fisheries Development Project of the South Pacific Commission is 
an example of a very successful programme of exploratory surveys in the 
Pacific region. In this programme, the results from surveys in each 
country are published with full details of the methods used and the results 
obtained. A typical example is a report by Taumaia and Preston (1984). 
Intensive fisheries surveys may be of considerable importance to stock 
assessment and economic studies since the sampling methods usually are well 
documented and the results are available for future comparisons. By 
contrast, units of effort and identification of catch from routine data 
collection are often non-standardised and make comparison from year to year 
and area to area very difficult. 

1.5 How do we present and analyse the data we have collected 

Most of the remaining topics in this course will be concerned with 
simple but useful methods for processing, summarising and analysing the 
data collected. In Topic 2 are introduced some basic statistical concepts 
and terms which will be necessary for future work. Topic 3 covers 
frequency distributions, and Topic 4 deals with statistics which may be 
used to summarise and describe data. In Topic 5 we will look at some 
methods for analysing the relationship between different statistics such as 
catch against time. Topic 6 is devoted to the common methods of sampling 
as a means of obtaining estimates of statistics when we cannot get a 
complete collection of data. 
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TOPIC 2 - STATISTICAL METHODS : SOME IMPORTANT CONCEPTS 

2.1 Some Basic Definitions 

In statistics, as in any other subject, we need to define some words 
and phrases so that we can use them to have a specific meaning in a 
particular situation. We shall try to avoid using much "jargon", but we 
shall need some technical terms. One possible source of confusion here is 
that many of these words are used in everyday English, but in statistics 
their meaning is a little different from normal usage. It is worthwhile, 
therefore, taking a little time to make sure that these terms are 
understood since we shall use them a lot throughout this course. 

When we collect data, for whatever reason, we need to know exactly 
what kind of information we want, who or what this refers to, how we are 
going to obtain the data, and for what group of people or items. We use 
special terms to refer to each of these things; we talk about observing 
characteristics for statistical units in some population. The terms 
observing, characteristic, statistical unit and population all have special 
meanings and we shall look at all of these to see what their definition is 
and how the term is used. 

Statistical unit - We use this term to mean any person, group of 
people, item or thing about which we wish to obtain some numerical 
information. Examples of statistical units are: a person, a family, a 
household, a village, a building, a province, an island, a fish, a boat, a 
port, a period of time such as a week or a year, a church, a business 
establishment, and so on. We could think of many more examples. 

Population - When we collect statistical data we are interested in 
obtaining information about a group of statistical units - we use the word 
"population" to refer to this whole group. In English we usually use the 
word "population" to mean a group of people; we talk about the population 
of Suva or the population of Tonga, for example. In statistics we c£.n use 
"population" to mean a group of any type of statistical unit ; thus we can 
refer to the population of all households in Apia, the population of 
fishing boats on Rarotonga, the population of all fish caught in Tuvalu in 
the year 1983, and so on. When we want to collect statistical data we have 
to be very careful to define exactly what population it is that we are 
interested in. 

Observation - We use this word to stand for the method we use to 
collect any particular item of information. Usually an observation will be 
carried out by a person, sometimes with the help of instruments, but there 
are examples of some machines which will make observations and record the 
data automatically. It is important to realise that, in the statistical 
sense, observation can mean any method of collecting data, not just the 
physical act of seeing and noting something down. Common methods of 
statistical observation are: measurement, counting, personal judgement, 
conducting an interview, copying from existing records, a person completing 
a questionnaire, using self-recording instruments, and so on. 

Characteristic - This word is used to stand for some feature or 
property of the unit that we are interested in. We could, for example, 
record or observe the weight of a fish, the area of a farm, the value of 
all goods imported in a port, the annual income of a household, the number 
of people living in a village, and so on. In most situations, of course, 
one unit may have many different characteristics, all or some of which we 
may observe. 
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For example, when data are obtained about a pole-and-line fishing trip 
in a country's waters some of the characteristics of the trip which may be 
collected are: 

port of departure; 
country of registration; 
gross tonnage of vessel; 
number of crew; 
days spent fishing in territorial waters; 
species of fish taken; 
quantity of fish taken; 
average weight of fish. 

A characteristic can be one of two types. In the first case it may be 
expressed only in numerical values, and we call this type of characteristic 
a variable. Other characteristics do not take numeric values, and have to 
be described in words. This second type is referred to as an attribute. 

From the list of characteristics of the pole-and-line trip given 
above, we can identify the following as variables: 

gross tonnage of vessel; 
number of crew; 
days spent fishing; 
quantity of fish taken; 
average weight of fish. 

The attributes in the list are: 

port of departure; 
country of registration; 
species of fish. 

It is often more convenient, especially when using a computer, for 
statisticians to work in numbers rather than in words. Therefore, we 
sometimes allocate numerical codes to attributes. For example, we might 
allocate code 001 to skipjack, 002 to yellowfin, 003 to bigeye, 004 to 
albacore, and so on. Then we would key into the computer this code number, 
rather than the name of the species. However, it is important to recognise 
that, even though this characteristic has now been recorded in numeric 
form, it is still an attribute, not a variable. 

2.2 Notation 

During t h i s course we w i l l make use of some spec i a l s t a t i s t i c a l 
notat ion. This is the s t a t i s t i c i a n ' s shorthand way of expressing a concept 
which would otherwise be cumbersome and long-winded to e x p r e s s . We w i l l 
try to keep the notation as simple as possible . 

This special no ta t ion w i l l be in t roduced p r o g r e s s i v e l y during the 
course, but a few basic symbols should be described immediately. 

n, N : The number of observations under consideration is denoted by "n" 
in the case of a sample, and "N" in r e l a t i o n t o t h e whole 
population. Thus, if we collect data from a sample of 17 fishing 
boats for a survey, we say that n = 17. If the f leet consists of 
80 boats, we say that N = 80. 
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x When one variable is being considered, "x" is used to denote the 
values of the observation. This symbol is often followed by a 
subscript to describe exactly which observation is referred to. 
That is, xj refers to the value of the first observation, X2 
to the value of the second observation, and so on up to the final 
(i.e. nth) observation, which is denoted by xn. 

Thus, if we were measuring fork length of fish in centimetres, 
and the length of the first fish in our sample was 62 cm, we 
would say that x^ = 62. (The whole set of n observations can 
be described by reference to xj, X£, X3, ... xn.) 

y When we are considering two variables, the second variable will 
be denoted by y with subscripts as required. So if we were 
conducting length-weight comparisons, and the first fish weighed 
3.8 kg, we would say that x\ = 62 and yi = 3.8. 

i For convenience any particular observation is referred to as the 
ith observation. So in order to refer to the value of the first 
observation we say i = 1 and so on. We will find that "i" is 
most often written as a subscript. So that for instance x£ 
means the ith observation of our variable x. 

A This is the Greek letter, capital sigma, and means simply "the 
sum of". It must not be confused with (J, which is the ordinary 
Greek letter sigma, and which will be introduced later in the 
course. 

2.3 Diagrams 

In the following topics in this manual, we will be representing a 
number of statistical concepts in diagrammatic form. We will use three 
types of diagram - a scatter diagram, a graph and a bar chart. At the same 
time we will make brief mention of pie charts, which, although not 
specifically required in the later topics, are a very useful way to portray 
information diagrammatically. 

The topic of diagrams is a very important one, and the way diagrams 
are used to portray results of statistical surveys can greatly affect the 
understanding of the results. However, for the present we are not going to 
explore this topic in detail; we will simply touch on the basic principles 
of constructing these types of diagram, as a lead-in to the following 
topics. 

A diagram is used to demonstrate the relationship between charac­
teristics. The main components are: 

(a) Heading: essentially a diagram number and a title, describing 
what the diagram represents; 

(b) Two axes: a vertical or "y" axis and a horizontal or "x" axis. 
These meet at the origin ("0"). Each axis must be clearly 
labelled and values of the variable or attribute are plotted 
along it according to some scale; 

(c) The data: plotted on the diagram, depending on the type of 
diagram being used. 
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2 . 3 . 1 S c a t t e r diagram 

When we draw a s c a t t e r d iagram, we a r e l o o k i n g a t t h e r e l a t i o n s h i p 
be tween two c h a r a c t e r i s t i c s . In g e n e r a l , we s h a l l h a v e a number of 
obse rva t ions of both of these for a s e r i e s of s t a t i s t i c a l u n i t s . We s h a l l 
be concerned here almost exc lus ive ly wi th v a r i a b l e s . We s h a l l assume t h a t 
we have a sample of n u n i t s , and f o r each u n i t we s h a l l o b s e r v e two 
v a r i a b l e s which we can denote by x and y. Thus , f o r t h e f i r s t u n i t , t h e 
o b s e r v a t i o n s can be w r i t t e n as x i y j , f o r t h e s e c o n d u n i t X2y2> and 
so on. In g e n e r a l , for the i t h u n i t , our o b s e r v a t i o n s w i l l be w r i t t e n as 
x^yi and t h e r e w i l l be n such p a i r s . I f we have a g raph w i t h two axes 
to r e p r e s e n t t h e two v a r i a b l e s , t h e n each p a i r of o b s e r v a t i o n s can be 
p l o t t e d as a p o i n t ; the co -o rd ina t e s of the p a i r s w i l l be t h e v a l u e s ( x ^ , 
y i ) . This kind of graph with a l l n o b s e r v a t i o n s p l o t t e d as a number of 
p o i n t s i s c a l l e d a " s c a t t e r diagram". I t i s a v e r y u s e f u l f i r s t s t e p i n 
looking a t the r e l a t i o n s h i p between x and y . 

For example, suppose t h a t on 10 s e l e c t e d days we r e c o r d e d d e t a i l s of 
the number of boats f i s h i n g , and the t o t a l d a i l y c a t c h from an a r t i s a n a l 
f i she ry (Table 2 . 1 ) : 

TABLE 2.1 : BOATS OPERATING AND DAILY CATCH AT AN ARTISANAL 
FISHERY 

Day 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Boats 
operating 

(x) 

12 

15 

10 

12 

18 

14 

6 

15 

16 

9 

Total catch (kg) 
(y) 

590 

820 

330 

740 

900 

660 

240 

650 

850 

470 

In a scat ter diagram we wi l l show number of boats on the x -ax i s and 
catch on the y-axis . The resu l t for the f i r s t day is p l o t t e d as a p o i n t , 
where the ve r t i ca l distance above the x -ax i s i s equal to 590 kg and the 
horizontal distance from the y -ax i s i s e q u a l i v a l e n t to 12 b o a t s . This 
point r e p r e s e n t s t h e p a i r of o b s e r v a t i o n s x ^ y j , as shown in t h e 
diagram. The dotted l ines are also drawn in to show exactly how th is point 
was located. In prac t ice , however, in cons t ruc t ing a s c a t t e r diagram we 
are interested in showing jus t the d i s t r ibu t ion of p o i n t s . Figure 2.1 i s 
the scat ter diagram showing a l l 10 pairs of observations. 
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FIGURE 2.1 : NUMBER OF BOATS OPERATING AND TOTAL CATCH PER DAY 

1000n 

No. of boats operating each day 

2 .3 .2 Graphs 

A graph is very similar to a scatter diagram, showing the relationship 
between two variables, but with the points linked up by lines, to show the 
trend in the relationship. 

Graphs are very useful when we show how some variables change over 
time, as in Figure 2.2. 

FIGURE 2.2 : TOTAL ANNUAL FISH CATCH IN COUNTRY ABC 
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We may note that drawing lines to link up points has a real meaning in 
this situation, because the slope of each line shows whether catch is going 
up or down from one year to the next. However, linking up points in the 
previous diagram would not make sense. It would not be showing a trend. 

Graphs are not necessarily constructed by straight lines joining up a 
series of points, as in that illustration. Often we have curves, to 
represent the shape of different distributions, and we will study that in 
the next topic. 

2.3.3 Bar charts 

If we wish to prepare a diagram of da ta c l a s s i f i e d by some a t t r i b u t e , 
r a t h e r than by a v a r i a b l e , then a l i n e graph i s not s u i t a b l e . For example, 
if we have s t a t i s t i c s on product ion of f i s h by d i s t r i c t , we canno t p l a c e 
d i s t r i c t s along the x -ax i s and j o i n up a s e r i e s of po in t s by a l i n e . Such 
a l i n e would be m e a n i n g l e s s . I n t h i s s i t u a t i o n t h e b e s t form of 
p r e s e n t a t i o n i s a bar c h a r t . 

However, t h e use of t h i s t y p e of d i a g r a m i s n o t r e s t r i c t e d t o 
a t t r i b u t e s . We can a l so dep ic t r e l a t i o n s h i p s be tween v a r i a b l e s on a b a r 
c h a r t . Figure 2 .3 shows the same data of f i s h c a t c h ove r s e v e r a l y e a r s , 
which we p rev ious ly depic ted by a l i n e graph, in the form a bar c h a r t . 

FIGURE 2.3 : TOTAL ANNUAL FISH CATCH IN COUNTRY ABC 
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The bars can be drawn f a i r l y c lose t o g e t h e r , or fu r the r a p a r t , and may 
be shaded or c ross -ha tched to improve the appearance. A l i t t l e l a t e r , we 
w i l l look a t a p a r t i c u l a r type of bar c h a r t , c a l l e d a h i s t o g r a m , i n which 
data i s r ep re sen t ed in a s e r i e s of bars which a re cont iguous . 

2 . 3 . 4 Dependent and independent v a r i a b l e s 

Having chosen t h e t ype of d i ag ram we r e q u i r e i n o r d e r t o b e s t 
i l l u s t r a t e the d a t a , we next need to decide which c h a r a c t e r i s t i c w i l l be 
p l o t t e d on the x - a x i s , and which on t h e y - a x i s . To d e t e r m i n e which way 
round to draw the diagram, we need to see i f t h e r e i s l i k e l y t o be any form 
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of relationship between the characteristics. In many cases we can say that 
we are interested in seeing how one variable changes as another variable or 
attribute changes. In our example of total fish catch in Figures 2.2 and 
2.3, we are trying to show how the level of catch changes as time changes. 
In Figure 2.1, we are interested in how the catch varies according to the 
number of boats engaged. 

In Figures 2.2 and 2.3, we may say that the total catch depends on 
time; in Figure 2.1, that catch depends on the number of boats engaged. 
More formally we say that we have a dependent variable and an independent 
variable (or attribute). In these situations we cannot reverse the 
relationship. It would be silly to say we were looking at how time varied 
depending on the level of fish catch, for example. 

Given this kind of independent-dependent relationship we always plot 
the dependent variable on the y-axis and the independent variable or 
attribute on the x-axis. This is a mathematical convention, it is used for 
convenience, and it makes diagrams easier to understand. 

Where there is no clear direction of dependence between the 
characteristics then it does not matter much which one is plotted on which 
axis. This situation will not occur very often in practice, as we will 
usually find that one variable can be considered to depend on the other. 

An example, which we will study later, is the relationship between the 
length and weight of fish. It may be argued that each one depends on the 
other, and that there is no clear dependent/independent relationship. Even 
here though, there is a convention, and it will be found that weight is 
always plotted on the y-axis, and length on the x-axis. 

2.3.5 Pie charts 

A basic pie chart consists of a circle divided into a number of 
sectors. Each sector is used to represent a particular value of a 
characteristic, the area of each sector being proportional to the share of 
that characteristic to the total. Either variables or attributes can be 
portrayed in this manner, but a pie chart is especially useful for 
attributes, as in Figure 2.4. 

FIGURE 2.4 : CATCH COMPOSITION BY WEIGHT (GENERA WITHIN GROUP 
LISTED IN DECREASING ORDER OF IMPORTANCE) 
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The normal practice, as shown in this figure, is to commence at the 
top of the chart (the "12 o'clock" position) and to work clockwise from 
there, with the largest or most important sector being shown first. 

A pie chart such as this is quite easy to prepare. The area of any 
sector of a circle is proportional to the angle at the centre between the 
two radii. Since the value of the characteristic has to be proportional to 
the area, all we have to do is to draw a number of sectors with angles 
proportional to the value of the characteristic. The sum of the angles 
will of course be 360 degrees. The calculation for any category is then 
quite simple. 

Notice also, that since we are dealing with proportions we can prepare 
the pie chart either from the actual data or from a percentage 
distribution. With too many categories a pie chart becomes confused and 
difficult to read; as a general rule eight is about the maximum number that 
should be included. 

2.4 Rounding of numbers 

During later topics we will encounter situations where we need to 
round numbers to a certain number of significant digits, or to the nearest 
one decimal place. It may also be necessary in publishing survey data to 
present results rounded to the nearest tonne, or to the nearest thousand, 
etc. To ensure that this is done in a consistent way, we need a standard 
rounding procedure. 

The basic principle is to round to the nearest significant digit. 
Thus, if we wish to round 428,548 to the nearest thousand, we would record 
this as 429,000. When we need to round a number which is exactly halfway 
between two significant digits, we adopt a convention of rounding so that 
the last significant digit is even. So we would round the number 428,500 
to 428,000, in preference to 429,000. 

We should note here that, when a series of numbers and the total of 
those numbers are rounded, it may happen that, after rounding, the sum of 
the components is not equal to the total. For example, let us consider the 
following, where a set of numbers is to be rounded to the nearest thousand. 

128,613 rounded to 129,000 
428,548 429,000 
37,924 38,000 

595,085 ? 

Clearly the total should be rounded to 595,000 according to our rules, and 
yet the sum of the three rounded numbers is 596,000. 

This gives us a problem in how to present the data in rounded form, 
and as similar situations will often arise in practice, we need a 
convention to deal with it. It is recommended that each number be rounded 
correctly according to the rules (the total in the example being rounded to 
595,000), so that the sum of the components may not be exactly equal to the 
total. This disadvantage of this is that users may notice that the total 
does not correspond exactly with the sum of the components, and may 
conclude that an error has been made. To counteract this it is normal 
practice to include in publications a note, such as "Any discrepancy 
between totals and the sum of components is due to rounding". 
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TOPIC 3 - FREQUENCY DISTRIBUTIONS : REDUCING A LOT OF DATA 
INTO A MANAGEABLE FORM 

3.1 Background and Introduction 

When we undertake a statistical investigation we end up with a series 
of observations of some characteristic for a number of units. Usually, of 
course, we will have a number of observations of different variables and 
attributes for each unit, but to keep the situation fairly simple at 
present we will only look at one variable. Given, then, the series of 
observations, we want to find out some way we can summarise this 
information, so that we may begin to make sense out of it. We may want to 
make some kind of decision, or inference, about the whole group of units, 
perhaps to compare them with some other group; we may want to make some 
kind of estimate for the whole population of units of which our group may 
only be a small part; or we may just want to have some convenient way to 
summarise the basic data, to reduce the amount of information to a 
manageable size. 

We shall start off by looking at a frequency distribution as a method 
of summarising the basic data; later on in this topic we shall see how we 
can develop a theoretical basis. As an example, consider the information 
given in Table 3.1. This represents a summary of 1,870 observations of the 
weights of mangrove crabs packed for export. We prepare a frequency 
distribution by dividing the range of weights we observe into a number of 
classes and then counting the number of observations in each class. 

TABLE 3.1 : EXAMPLE OF A FREQUENCY DISTRIBUTION (NUMBER OF MANGROVE 
CRABS PACKED FOR EXPORT ACCORDING TO WEIGHT) 

Weights of Crabs 

200 
300 
400 
500 
600 
800 

1,000 
1,200 
1,600 

to less than 
to less than 
to less than 
to less than 
to less than 
to less than 
to less than 
to less than 
and over 

(g) 

300 
400 
500 
600 
800 
1,000 
1,200 
1,600 

Total 

Number of Crabs 

55 
302 
540 
3 57 
290 
176 
59 
52 
39 

1,870 

This frequency distribution has summarised 1,870 observations into 9 
groups or classes, together with a total figure. Obviously this is much 
easier to comprehend than a list of 1,870 individual values would be, even 
if those values were sorted into size order. At the same time we have lost 
some of the original detail; we do not know the actual value of any of the 
observations. 

A typical frequency distribution then, divides the range of values of 
the characteristic we are considering into different classes and counts the 
number, or the frequency, of observations within each class. We can 
construct frequency distributions for both variables and attributes, but 
procedures for attributes are quite straightforward so in this topic we 
will concentrate only on variables. Later on we shall distinguish between 
two basic types of variables. 
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A frequency distribution is particularly useful if we wish to find out 
how the values of a variable are distributed. It shows at a glance the 
range of values, how many high values and how many low values have been 
observed, what the most frequently occurring values are, and whether the 
values are symmetrically distributed along the range, or whether they are 
mostly at one end. 

3.2 Construction of a frequency distribution 

Preparing a frequency distribution from a list of the basic data 
consists of three steps: 

(a) specifying the classes into which the data are to be grouped; 

(b) sorting the data into these classes; and 

(c) counting the number of observations in each class. 

The last two of these steps are quite straightforward, but it can be quite 
difficult to decide on the number of classes we need, and on the range of 
values for each class. In Table 3.1, on crab weights, we chose nine 
classes, and the class interval (or range) was 100 g for the first four 
classes, 200 g for the next three, 400 g for the next one, and unlimited 
for the last class (i.e. it was open-ended, and any observation of 1,600 g 
or more would have been included in it). 

Although in principle we can decide on any set of classes we like for 
a distribution, and the definition of each class will depend on the purpose 
of the distribution, there are some guidelines which it is useful to 
follow: 

(a) The classes chosen must span a range sufficient to encompass 
every observation, from the lowest to the highest. 

(b) There should be no gap or overlap in the classes; each should be 
separate and distinct. It is particularly important that the 
range of each class should be defined so that each observation 
can only go into one class. If in our previous example we had 
carelessly described the classes as 200-300, 300-400, 400-500 and 
so on, we would not know how to classify a crab weighing exactly 
400 gms, as it could go into either of two classes. We must be 
sure that there is no ambiguity, and that observations which are 
on the border between two classes will fit into only one of them. 

(c) There should not be too many classes (as this will lose the 
advantage of a frequency distribution over the raw data), nor too 
few (as too much information will be lost). In general, it is 
suggested that more than 5, and not more than 16, separate 
classes are desirable, but these are no firm limits. The number 
of classes formed will depend on the nature of the data, on the 
number of observations, and on the type of distribution. 

(d) It is advantageous, whenever practicable, for the class 
intervals, that is, the range (or length) of each class, to be 
the same. Class intervals of equal length make it much easier to 
comprehend the distribution and to draw suitable diagrams. If 
unequal intervals are used it is often difficult to compare one 
class frequency with another. Sometimes, however, it is 
impossible to avoid unequal intervals; the variability of the 
data requires their use. 
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(e) Whenever possible avoid the use of open-ended intervals, that is 
classes at the ends of the distribution in which one end value of 
the class is not stated. 

As we have already observed, our frequency distribution of crab 
weights does not have equal class intervals, as we have suggested in (d) 
above. We could try to combine data into classes with equal intervals of, 
say 400 g, and the frequency distribution would then become as shown in 
Table 3.2. 

TABLE 3.2 : NUMBER OF MANGROVE CRABS, ARRANGED IN CLASSES WITH 
EQUAL INTERVALS 

Weights of Crabs (g) 

Less than 400 
400 and less than 800 
800 and less than 1,200 

1,200 and less than 1,600 
1,600 and over 

Total 

Numb er of Crabs 

357 
1,187 
237 
52 
39 

1,870 

I t w i l l be seen t h a t t h i s d i s t r i b u t i o n does not conta in as much useful 
information as the f i r s t t a b l e , as one c l a s s now conta ins nea r ly two- th i rds 
of a l l c a s e s ( 1 , 1 8 7 out of 1 , 8 7 0 ) . The breakdown of t h i s c l a s s i n t o 
s m a l l e r c l a s s e s , as we had o r i g i n a l l y s h o w n , i s d e s i r a b l e t o g i v e 
a d d i t i o n a l information on the s i ze of crabs in t h i s l a rge c l a s s . General ly 
i t w i l l be found t h a t t h e more even ly t h e o b s e r v a t i o n s a r e s p r e a d , t h e 
e a s i e r i t w i l l be to cons t ruc t a frequency d i s t r i b u t i o n w i t h equa l c l a s s 
i n t e r v a l s . 

I t w i l l a l so be n o t e d t h a t t h e f i n a l c l a s s of our d i s t r i b u t i o n i s 
open-ended, de sp i t e the recommendations of p r i n c i p l e ( e ) above . However, 
i t i s of ten q u i t e d i f f i c u l t , or even v i r t u a l l y i m p o s s i b l e t o avo id t h e i r 
u s e . For example, the re may have been one or two very l a rge c r a b s , of say 
3,000 g, and we would have had to break down the f i n a l c l a s s i n t o s e v e r a l 
c l a s s e s , wi th d i f f e r e n t i n t e r v a l s , in order to avoid t h e open-ended c l a s s 
we have used. Since t h e r e are only two pe r cen t of a l l o b s e r v a t i o n s in 
t h i s c l a s s , a fu r the r breakdown would not have been d e s i r a b l e . 

We w i l l now use a d i f f e r e n t set of da ta to i l l u s t r a t e how a f r equency 
d i s t r i b u t i o n i s cons t ruc t ed . The data r ep resen t the weight in kilograms of 
a sample of 63 yel lowfin tuna caught by p o l e - a n d - l i n e method ( T a b l e 3 . 3 ) . 
For t h i s exe rc i s e i t i s assumed t h a t a l l weights are rounded to the nea re s t 
1/10 kg. 

TABLE 3.3 : WEIGHTS OF 63 YELLOWFIN ( i n ki lograms) 

4.6 
3.2 
2.1 
5.3 
5.4 
5.0 
4.8 
2.6 

3.9 
2.2 
4.2 
4.0 
5.7 
5.4 
7.2 
7.9 

2.8 
3.2 
5.0 
4.7 
3.8 
3.4 
6.4 
3.3 

6.6 
4.1 
4.6 
3.6 
4.1 
4.4 
3.0 
5.5 

4.2 
3.1 
5.4 
3.3 
5.6 
4.0 
3.5 
4.3 

3.7 
3.0 
2.4 
6.9 
6.2 
3.6 
5.8 
3.9 

3.7 
4.8 
6.3 
4.5 
3.0 
5.0 
7.7 
6.3 

5.9 
4.1 
2.9 
2.5 
3.3 
4.1 
3.9 
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To determine the different classes we first of all need to know the 
range, from the lowest to the highest value. In this case the lowest value 
is 2.1 kg, the highest 7.9 kg, the range therefore is 5.8 kg. We wish to 
split the range up into a number of classes, and the observations are so 
evenly spread that there seems no reason with this data why we should 
choose classes with unequal intervals. A suitable distribution, then, is 
given in Table 3.4. 

TABLE 3.4 : FREQUENCY DISTRIBUTION OF YELLOWFIN WEIGHT DATA 

Weights (kg) Frequencies 

2.0 - 2.9 
3.0 - 3.9 
4.0 - 4 .9 
5.0 - 5.9 
6.0 - 6.9 
7.0 - 7.9 

Total 

7 
19 
16 
12 

6 
3 

63 

3.3 Definition of terms 

We n e e d t o d e f i n e some t e r m s when t a l k i n g a b o u t f r e q u e n c y 
d i s t r i b u t i o n s . Some of t h e s e we have used a l r e a d y ; in t h i s s e c t i o n we 
s h a l l def ine the terms more c l o s e l y . 

(a) Class frequency 

The c l a s s frequency in a d i s t r i b u t i o n gives the number of obse rva t ions 
f a l l i n g w i t h i n t h a t p a r t i c u l a r c l a s s . When p r e s e n t i n g a f r e q u e n c y 
d i s t r i b u t i o n in t a b u l a r form, t h e c l a s s e s a lways go in t h e l e f t hand 
column, with the c l a s s f requencies on the r i g h t . 

(b) Class limits 

The smallest and largest values (rounded where necessary) that can go 
into any given class are termed its class limits. In the yellowfin weights 
table the class limits are 2.0, 2.9, 3.0, 3.9, and so on. We usually 
differentiate between the lower class limits (2.0, 3.0, 4.0, etc.) and the 
upper class limits (2.9, 3.9, 4.9, etc.). 

(c) Class boundaries 

These represent the actual, or true limits to a class. There is a 
fine distinction between class boundaries and class limits, and it is 
important to be clear on this distinction. In our example we may note that 
a fish weighing (say) 2.96 kg will be recorded in the survey as weighing 

l 3.0 kg. The class boundaries in this example are actually 1.95, 2.95, 
3.95, and so on. 

(d) Class marks 

The class mark is the mid-point of the class, and is obtained by 
taking the arithmetic mean of the upper and lower class limits. In the 
example, the class marks are 2.45, 3.45, 4.45, etc. These are often also 
referred to as mid-marks, mid-points, mid-values, etc. 
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(e) Class interval, or range 

The class interval is the length of any class, the range of values it 
contains. The class interval of a class is the difference between the 
lower class limit of that class and the lower class limit of the next 
class. If all the intervals are equal then it is also equal to the 
difference between successive class marks. For example, the class interval 
for the yellowfin weights is 1.0 kg and is equal for all classes. Note 
that the class interval is not necessarily the difference between the upper 
and lower limits of the class. (In our table this is equal to 0.9 kg.) 

3.4 Continuous and discrete data 

At this point in the study of frequency distributions, we need to 
distinguish between two different types of variable, because the problems 
of constructing a frequency distribution and drawing diagrams of the 
distributions are somewhat different for each type. The first is where the 
variable is allowed to take any value within a specified range, and the 
second where the variable can only take certain values. The first type we 
call a continuous variable and we also refer to continuous data; the second 
type we call discrete. Examples of continuous variables are: 

(a) fork length of fish; 
(b) weight of fish; 
(c) water temperature of sea surface. 

Examples of discrete variables are: 

(a) number of canoes in a village; 
(b) number of longline sets; 
(c) crew number. 

In most cases discrete variables take whole number (or integer) values, 
although this is not essential. 

In practice, the dividing line between continuous and discrete data is 
often very difficult to discern. Continuous data will not normally be 
recorded in an absolutely continuous way, as there are limitations to the 
accuracy with which we can measure or record a variable. For example, we 
may be able to measure the weight of a fish to the nearest 1/10 kg - or 
even to the nearest gram if we had accurate enough equipment - but that is 
as fine a breakdown as we could hope to achieve. 

Likewise some discrete data can be dissected so finely that it looks 
like continuous data. Revenue from fish sales could be recorded to the 
nearest dollar, or even to the nearest cent, and we would have such a 
spread of recordings that we could treat this as though it were continuous. 
There is a fine distinction, however. Fish weights could take any value 
whatever in a range, and it would still be meaningful; revenue on the other 
hand cannot be expressed in fractions of a cent, because a cent is the 
smallest unit of currency which exists. 

While quite often the division between continuous and discrete data is 
blurred, there are situations where the distinction is important. For 
instance, if we are discussing the number of fishing units in a village, or 
the number of landing sites on an island, we will have a discrete 
distribution which does not look at all like a continuous distribution. 



30 

We can illustrate this by looking at two examples of constructing 
frequency distributions from discrete data. The situation is simple as 
long as we have one value of the variable only in one class. For example, 
we can quite simply present data summarising the number of villages with 0, 
1, 2, 3, 4, etc. powered fishing boats as in Table 3.5. 

TABLE 3.5 : NUMBER OF VILLAGES, BY NUMBER OF POWERED FISHING BOATS 
PER VILLAGE 

Number of powered 

0 
1 
2 
3 
4 
5 
6 or 

boats 

more 

Total 

Number of villages 

20 
7 
12 
28 
17 
10 
4 

98 

Often, however, the range of values is so great that we have to combine 
values in each class. For example, a country may be interested in the 
distribution of visits by longline vessels to its territorial waters, 
classified by number of longline sets made during a visit. The 
distribution might be as shown in Table 3.6. 

TABLE 3.6 : NUMBER OF VISITS BY LONGLINE VESSELS, CLASSIFIED BY 
NUMBER OF SETS PER VISIT 

Number of longl 

1 - 5 
6-10 
11 - 15 
16 - 20 
21 - 25 
26 - 30 
31 - 35 
36 - 40 
Over 40 

ine sets 

Total 

Number of visits 

17 
25 
23 
39 
49 
33 
15 
4 
5 

210 

Although this table looks like the table for the distribution of weights of 
yellowfin, we must be careful to remember that the data are discrete. We 
cannot talk about a vessel making 18.3 longline sets. 

3.5 Cumulative frequency distributions 

A frequency distribution provides information on the number of 
observations in the different classes; we can tell at a glance from the 
table how many small-sized and large-sized observations there are. Often, 
however, we have a situation where slightly different information is 
required. What is of interest in this case is to find out how many 
observations are larger than some specified value, or how many observations 
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are less than a certain amount. For example, in our earlier exercise on 
crab weights, we may well be interested in how many crabs weighed less than 
500 g, how many weighed 800 g or more, and so on. This type of information 
can be readily obtained from a cumulative frequency distribution. 

Table 3.7 shows how we can construct a cumulative frequency 
distribution for the data on longline sets per visit. 

TABLE 3.7 : EXAMPLE OF A CUMULATIVE FREQUENCY DISTRIBUTION 

No. of longline 
sets per visit 

1 - 5 
6-10 
11 - 15 
16 - 20 
21 - 25 
26 - 30 
31 - 35 
36 - 40 
Over 40 

Total 

No 
lo 
. o 
ngl 

f visits by 
ine vessels 

17 
25 
23 
39 
49 
33 
15 
4 
5 

210 

Cumulative 
frequency 
(less than) 

17 
42 
65 
104 
153 
186 
201 
205 
210 

Cumulative 
frequency 

(greater than) 

210 
193 
168 
145 
106 
57 
24 
9 
5 

The cumulative frequency distribution is obtained by calculating the 
progressive totals of the frequencies in each class. This can be done in 
one of two ways as illustrated in Table 3.7. The cumulative frequency 
distribution (less than) is calculated by starting with the first class, 
and then adding the cumulative frequency in each class until the last. The 
cumulative frequency distribution (greater than) is calculated by starting 
with the last class and working upwards. 

As their name suggests, the two cumulative distributions are used to 
answer the questions: how many observations are greater than a certain 
value? Or, how many observations are less than a certain value? From the 
table we can see at a glance that 65 of the vessels made 15 sets or less 
during a visit to the country's territorial waters, and 106 made over 20 
sets in a visit. 

3.6 Diagrams of frequency distributions 

A frequency distribution gives information on the way that a number of 
observations of a particular characteristic are "distributed" or spread out 
over a range of values. As well as preparing tables of these 
distributions, it is also important to have methods of representating them 
graphically, since in this way the different patterns in the data can be 
seen at a glance. 

(a) Frequency histogram 

The most common method of representing a frequency distribution is by 
drawing a frequency histogram. A histogram for our earlier data on 
yellowfin weights would be drawn as shown in Figure 3.1. 
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FIGURE 3.1 : FREQUENCY HISTOGRAM OF WEIGHTS OF 63 YELLOWFIN 
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To draw a frequency histogram we observe the following general 
principles: 

(a) Magnitudes are drawn along the horizontal axis. 

(b) Frequencies are plotted along the vertical axis. 

(c) The general practice of all diagrams should be followed. Where 
applicable, headings, footnotes and full details of both axes 
should be provided. 

(d) Frequencies should only be represented by a rectangle covering 
the whole of an interval if the data is continuous; discrete 
histograms are drawn somewhat differently, as will be shown a 
little later in this section. 

(e) When plotting a continuous distribution it is the area of each 
rectangle and not the height that is proportional to the 
frequency. It is only in the case of equal intervals, as in the 
previous diagram, that the frequency is proportional to the 
height. 

It is worth noting here that we have shown the weights of the classes 
of yellowfin in the previous diagram as 2.0, 3.0, 4.0, etc. These values 
represent the lower limit of each class. At the same time, we must 
remember that all the weights have been rounded to the nearest 0.1 of a 
kilogram and that the true class limits are 1.95, 2.95, etc. 

To illustrate how we should deal with a distribution with unequal 
intervals, we will return to our earlier example of mangrove crabs. In 
this case we have several different intervals for the crab weights. We 
must draw each rectangle so that its width is proportional to the class 
interval, but so that its area is proportional to the observed frequency. 
Perhaps the best way to achieve this is to calculate for each class a 
frequency which is an equivalent for the smallest class interval in the 
table (i.e. 100 g). Thus we can say the the 290 observations for the 
class 600 to less than 800 g is equivalent to 290 x 100/200 = 145 
observations per 100 g interval. In this way all figures are brought to a 
common basis, and the heights in the diagram will be proportional to these. 
The calculations are as shown in Table 3.8. 
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TABLE 3 . 8 : CALCULATIONS FOR PLOTTING A HISTOGRAM WITH UNEQUAL 
CLASS INTERVALS 

200 
300 
400 
500 
600 
800 

1,000 
1,200 
1,600 

Class 

and less 
and less 
and less 
and less 
and less 
and less 
and less 
and less 
and over 

than 
than 
than 
than 
than 
than 
than 
than 

300 
400 
500 
600 
800 
1,000 
1,200 
1,600 

Frequency 

55 
302 
540 
357 
290 
176 
59 
52 
39 

Equivalent fi 
per 

290 
176 
59 
52 

equency 
100 gram interval 

x 100/200 
x 100/200 
x 100/200 
x 100/400 

-

= 
= 
= 
= 

55 
302 
540 
357 
145 
88 
30 
13 
-

The h i s t o g r a m of t h i s t h e n can be drawn a s i n F i g u r e 3 . 2 . 

FIGURE 3 . 2 : NUMBER OF MANGROVE CRABS PACKED FOR EXPORT 
ACCORDING TO WEIGHT 
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Apart from the f a c t t h a t t h i s d i s t r i b u t i o n has unequa l i n t e r v a l s , 
t h e r e i s one o t h e r p o i n t t h a t i s i n t e r e s t i n g . There i s a problem i n 
deciding how to deal with open-ended c l a s s e s , in t h i s case the c l a s s "1,600 
and over" . Since we do not know the c l a s s w i d t h we cannot c a l c u l a t e t h e 
he ight of the r e c t a n g l e to r ep re sen t t h i s par t of the t o t a l f r equency . I t 
would be wrong to leave i t out a l t o g e t h e r , so we have to decide what to do. 
Bas i ca l l y the problem can be d e a l t with in one of two w a y s . F i r s t l y , we 
can assume an upper l i m i t f o r t h e d i s t r i b u t i o n , and draw t h e r e c t a n g l e 
a c c o r d i n g l y . The second a l t e r n a t i v e i s t o draw t h e r e c t a n g l e w i t h a 
nominal he ight but l e a v e i t open , as i n F i g u r e 3 . 2 . T h i s i n d i c a t e s an 
open-ended i n t e r v a l . This second method only works when t h e f r e q u e n c y i n 
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the open-ended interval is small (as is often the case), and in these 
circumstances, it is probably the better presentation. 

When we are dealing with discrete data we can sometimes consider it to 
be approximately continuous if the unit of measurement is small compared 
with the size of the observation. Thus, for example, we may have a 
distribution of the number of villages according to the number of people in 
each village. Strictly speaking this is a discrete distribution since we 
cannot have fractional parts of a person. In practice, however, we can 
probably treat the data as continuous since the unit of measurement, one 
person, is small compared with the range of the data, which might be 1,000 
people for instance. When we have a discrete distribution where the unit 
of measurement is large compared with the range of values, such as in our 
earlier example of the number of powered boats in a village, then we cannot 
draw a continuous histogram. Instead, we plot the frequencies by means of 
a simple bar chart of the type we studied in the previous chapter. 
Sometimes a single line instead of a bar is used as in the example in 
Figure 3.3. 

FIGURE 3.3 : NUMBER OF VILLAGES BY NUMBER OF POWERED FISHING 
BOATS PER VILLAGE 
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Notice the way the problem of class "6 or more" has been dealt with. 

(b) Frequency polygon 

An alternative type of diagram, suitable for continuous data, or for 
discrete data which can be considered to be approximately continuous, is a 
frequency polygon. In this type the frequencies of each class are plotted 
at the class mark, and successive points joined up by straight lines. An 
example of such a polygon for the yellowfin tuna data is given in 
Figure 3.4. 
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FIGURE 3 . 4 : FREQUENCY POLYGON FOR YELLOWFIN WEIGHT DATA 
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The beginning and end of the polygon should be extended to the x axis, 
at the mid-points of the classes below and above those covered by the 
distribution. The area under the polygon then is equal to the area of the 
rectangles in the earlier diagram. This area, as in the histogram, 
represents the total frequency. 

(c) The ogive 

J u s t a s f o r some p u r p o s e s i t i s b e t t e r t o c o n s t r u c t a c u m u l a t i v e 
f r e q u e n c y d i s t r i b u t i o n , so we a l s o f i n d i t u s e f u l t o r e p r e s e n t c u m u l a t i v e 
d i s t r i b u t i o n s g r a p h i c a l l y . I f we c o n s t r u c t e d a c u m u l a t i v e f r e q u e n c y 
d i s t r i b u t i o n f o r t h e y e l l o w f i n d a t a , and t h e n draw a h i s t o g r a m , t h i s w o u l d 
a p p e a r a s a s e r i e s of r e c t a n g l e s a s shown i n F i g u r e 3 . 5 . 

FIGURE 3 . 5 : CUMULATIVE FREQUENCY HISTOGRAM OF YELLOWFIN 
WEIGHTS 
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The dotted line in Figure 3.5 represents the cumulative frequency 
polygon; this is also called the ogive. This joins up the top right hand 
corner of each rectangle. This diagram represents the cumulative frequency 
distribution (less than). We can also draw a similar ogive for the 
cumulative frequency distribution (greater than). 

Note that the ogive joins up points on the Figure which represent all 
the observations up to that point. The first class must therefore 
terminate at 2.95 kg, and not 3.0 kg; a yellowfin weighing (say) 2.97 kg 
would not be included in this first class. 

This shows the need for care and precision, and highlights the 
importance of defining exactly what we mean by all our terms. In our crab 
weights example, we used a different approach and defined classes as "400 
and less than 500 g", etc., so in that case the true class limits are 400 g 
etc. We could have adopted the same approach for the yellowfin, and 
defined classes as "2.0 kg and less than 3.0 kg", etc. In that case 
weights would not be rounded, and a fish weighing 2.97 kg would be included 
in that class. If we had done so, the ogive would be drawn through points 
at 3.0, 4.0 kg etc. (Our class marks would also be different - at 2.5 kg, 
etc.) We can record our data either way, whichever is more convenient for 
us, but we must then take care to make all our calculations accordingly. 

Instead of plotting the actual frequencies on the y axis, as shown in 
Figure 3.5, we could convert this to percentages, and show the relative 
frequencies instead. The shape of the ogive would be exactly the same, but 
the y axis would be marked in percentages, from 0 to 100, instead of in 
numbers. The ogive (greater than) for our previous example of mangrove 
crab weights, expressed in percentages, is given in Figure 3.6. We can see 
from the lines drawn on this graph that it is very easy to derive estimates 
that (for example) 60 per cent of crabs weigh more than 485 g, 40 per cent 
weigh more than 560 g and 20 per cent weigh more than 755 g. 

FIGURE 3.6 : PERCENTAGE OGIVE (greater than) FOR DATA ON 
WEIGHT OF MANGROVE CRABS 
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I t i s worth not ing here t h a t a l l f i g u r e s of f r e q u e n c y d i s t r i b u t i o n 
have exac t ly the same shape r e g a r d l e s s of whe the r they a r e e x p r e s s e d i n 
abso lu te va lues or in pe rcen tages . I t i s o f t e n p r e f e r a b l e , p a r t i c u l a r l y 
when a t tempt ing to draw general c o n c l u s i o n s from d a t a , t o e x p r e s s t h e s e 
diagrams in pe rcen tages . 

Ogives a re useful for many purposes . We w i l l see in Topic 4 t h a t they 
can be used to c a l c u l a t e c e r t a i n measures , p a r t i c u l a r l y t h e m e d i a n , v e r y 
e a s i l y . 

3.7 The d i s t r i b u t i o n of the popula t ion 

Sometimes when we construct a frequency distribution the data we use 
comprises the whole population that we are considering. Very often, 
however, the data we have is only part of the population, and we wish to 
make assumptions about the population from our sample. For example, we are 
not only interested in the frequency distribution of the 63 yellowfin we 
have been discussing, but we would hope to be able to say something about 
the whole population of yellowfin which are caught by pole-and-line method. 

In this section we shall see in a very simple way how we can extend 
the idea of a frequency distribution to a population which has no limit on 
its size. We call such a population infinite. which indicates that we 
cannot count all the items in it. The same ideas will also apply to finite 
populations with a very large number of units; in many cases they can be 
assumed to be infinite. 

Consider the frequency polygon for the yellowfin data which we drew 
earlier (Figure 3.4). Imagine that instead of six classes we have twelve, 
but that we double the size of the sample. If we draw a frequency polygon 
of this data we would expect it to have roughly the same shape as before, 
but because there are more lines, the shape would appear smoother. 

Let us suppose that we repeat the process again, taking a "arger 
number of classes, but also a larger number of observations. The frequency 
polygon would be made smoother still. Eventually, as we take more and more 
classes, but increase the number of observations as well, we could expect 
to end up with a smooth curve. This curve represents the distribution of 
the whole population. 

The idea of a population distribution is very important in statistics; 
it forms the basis for a great deal of more advanced statistical theory. 
We have no time to go into this theory in detail; all we can do is to 
introduce some of the concepts. 

When we collect data from many different sources and then construct 
frequency distributions and draw histograms and polygons, in many cases we 
find that the shape of the distribution is quite regular. The 
distributions we have looked at so far all have quite a simple shape. This 
leads statisticians to seek a simple mathematical function that will 
describe or "fit" this shape. 

Such a mathematical function, in the case of continuous data, will be 
smooth and will describe the distribution of the population. If we find 
that many different populations are distributed in more or less the same 
way, then we can use these mathematical functions to answer important 
questions about the population. For example, are the fish in one part of 
the sea generally larger than those from another part? Does one group of 
people have a larger income than another? What is the likely range of 
catch per unit effort from a certain fishing technique? and so on. 



38 

One of the most important shapes of a population distribution is known 
as a "normal distribution". A typical normal distribution is shown below: 

Normal 

The normal distribution is symmetrical, that is, both sides are of the same 
shape. Some examples of distributions which have this kind of shape are: 

(a) numbers of adult men of different heights; 
(b) the number of rainy days in a year; 
(c) length frequency of a species of fish for a 

certain age class. 

In these examples, observations will have some high and some low values but 
a predominance of "average" values. 

There are a number of other shapes of population distributions which 
occur quite frequently, probably the most common being the skewed 
distribution. This looks like a normal distribution which has been pushed 
out of shape sideways so that it is no longer symmetrical, as depicted 
below: 

Skewed to right Skewed to left 
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An example of a d i s t r i b u t i o n which would almost c e r t a i n l y be skewed t o t h e 
r i g h t i s income d i s t r i b u t i o n of the popu la t ion ; in many c o u n t r i e s i t w i l l 
be found t h a t t h e r e i s a heavy c o n c e n t r a t i o n of incomes a t f a i r l y low 
l e v e l s , and then a long " t a i l " in the graph s t r e t c h i n g out t o t h e r i g h t , 
r e p r e s e n t i n g a f a i r l y sma l l number of p e o p l e w i t h ve ry h igh i n c o m e s . 
D i s t r i b u t i o n s of catch per u n i t e f fo r t a re a l so usua l ly s t rong ly skewed t o 
the r i g h t . 

Another d i s t r i b u t i o n q u i t e o f t e n e n c o u n t e r e d i s a " b i - m o d a l " 
d i s t r i b u t i o n . This has two d i s t i n c t peaks , v i z : 

\ 

Bi — modal 

Perhaps the best-known bi-modal distribution is of deaths by age. There is 
a first sharp peak at age 0, representing infant death, and then (as would 
be expected) a second, broader peak of deaths in higher age-groups. The 
distribution of fork length of yellowfin tuna taken by purse-seiners in the 
Pacific is also bi-modal. 

If we examine the diagrams of distributions presented earlier in this 
topic, we find that they have shapes similar to the types described above. 
The distribution of crab weights is strongly skewed to the right; that for 
yellowfin taken by pole-and-line is much closer to a normal distribution, 
but still skewed a little to the right; and the distribution of villages by 
number of powered boats is bi-modal. 
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TOPIC 4 - DESCRIPTIVE STATISTICS : SUMMARISING THE OBSERVATIONS 

4 . 1 I n t r o d u c t i o n 

In t h e p r e v i o u s t o p i c we saw how a n u m b e r of o b s e r v a t i o n s of some 
v a r i a b l e c o u l d be summarised by f o r m i n g a f r e q u e n c y d i s t r i b u t i o n . T h i s 
d i s t r i b u t i o n w i l l c o n t a i n a l o t of i n f o r m a t i o n abou t t h e v a r i a b l e , i t w i l l 
show how many h i g h v a l u e s t h e r e a r e , how many low o n e s , a n d by l o o k i n g a t 
t h e f r e q u e n c y h i s t o g r a m we can o f t e n g e t some i d e a of t h e d i s t r i b u t i o n of 
t h i s v a r i a b l e i n t h e p o p u l a t i o n . In many s i t u a t i o n s t h i s i s s u f f i c i e n t , 
b u t we o f t e n f i n d t h a t we need t o r e d u c e t h e amount of i n f o r m a t i o n i n t h e 
f r e q u e n c y d i s t r i b u t i o n e v e n f u r t h e r . I f we w a n t t o c o m p a r e t w o 
d i s t r i b u t i o n s , f o r example , i t can be d i f f i c u l t a n d c o n f u s i n g t o h a v e t o 
l o o k a t a l l t h e i n f o r m a t i o n . I n t h i s t o p i c we s h a l l s e e how we c a n 
c a l c u l a t e one o r two v a l u e s t h a t c a n be c o n s i d e r e d t o r e p r e s e n t some 
f e a t u r e o r p r o p e r t y of t h e d i s t r i b u t i o n . We can t h e n u s e t h e s e v a l u e s t o 
make c o m p a r i s o n s and t o form t h e b a s i s of more complex d e c i s i o n s . 

As an e x a m p l e , c o n s i d e r T a b l e 4 . 1 w h i c h s h o w s t w o f r e q u e n c y 
d i s t r i b u t i o n s of f o r k l e n g t h of y e l l o w f i n t a k e n by p u r s e - s e i n e v e s s e l s . 

TABLE 4 . 1 : COMPARISON OF TWO FREQUENCY DISTRIBUTIONS 

Country 

Fork length 
(cm) 

30-39 
40-49 
50-59 
60-69 
70-89 
90-109 
110-129 
130+over 

Total 

A 

Number 

132 
219 
253 
126 
61 
124 
182 
135 

1232 

Country 

Fork length 
(cm) 

Less than 40 
40-49 
50-54 
55-59 
60-64 
65-69 
70-79 
80-99 
100-119 
120+over 

Total 

B 

Number 

167 
345 
369 
492 
318 
160 
114 
281 
294 
203 

2743 

Using the data presented in Table 4 . 1 , compar i son i s d i f f i c u l t . We 
have the same v a r i a b l e in each c a s e , but d i f f e r e n t numbers of o b s e r v a t i o n s 
and d i f f e r e n t c l a s s e s . What we need to do i s t o look a t the d i s t r i b u t i o n s 
fo r t h e two c o u n t r i e s and t o f i n d some way of d e s c r i b i n g c e r t a i n 
c h a r a c t e r i s t i c s of each one, which we can then compare q u i t e e a s i l y . There 
are seve ra l d i f f e r e n t c h a r a c t e r i s t i c s t h a t we could choose, but in p r a c t i c e 
we tend to concen t ra te on j u s t two: the ave rage s i z e and d i s p e r s i o n . We 
choose t h e s e b e c a u s e t h e y have an o b v i o u s meaning and most p e o p l e can 
understand them, and because in p r a c t i c e we f i n d t h a t t h e y d e s c r i b e t h e 
whole d i s t r i b u t i o n e f f e c t i v e l y . These two m e a s u r e s form t h e b a s i s of 
a lmos t a l l s t a t i s t i c a l i n f e r e n c e , bu t we s h a l l on ly be d e a l i n g w i t h 
averages and d i s p e r s i o n as ways of d e s c r i b i n g or summar i s ing a s e t of 
o b s e r v a t i o n s . 
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4.2 Some special notation and concepts 

In this topic we shall be concerned with a number of observations of 
some variable and, as before, we shall only be dealing with one variable at 
a time. The observations may be grouped into a frequency distribution or 
they may be in their original state, but the principles in each case will 
be the same. In order to be able to make general statements that will be 
true about any set of data, however, we shall need to use some special 
statistical notation. We can use certain letters and symbols to stand for 
some items, and these usually will be the same as those introduced in the 
preliminary session to this course. There are, however, one or two new 
ideas that we must mention before we can go on to look at average and 
dispersion in detail. 

We will need to distinguish between populations and samples because 
there will be some important differences. When we are dealing with the 
whole population we generally use letters from the Greek alphabet to denote 
values we calculate; in particular, we shall be using the letters /U. (mu) 
and <T (sigma). For a sample, on the other hand, we use ordinary letters to 
represent values. 

In practice we are usually interested in the population values of 
averages and measures of dispersion, rather than just the sample values. 
The population values are referred to as parameters of the population to 
distinguish them from values derived from samples. Very often we do not 
have information about a population, rather we have a series of values from 
a sample. What we do is to estimate the population parameters by 
calculating sample statistics. 

4.3 Measures of average values 

An average is a measure of the size of a set of variables and it forms 
the basis of a lot of more advanced statistical work. There are several 
different types of average that we can calculate, or find, and the^ have 
different properties; which one we use in any particular situation will 
depend upon what we want to do. We shall look at three types of average: 
the arithmetic mean, the median and the mode; these are the ones most 
commonly used, although there are other types for more specialised uses. 

4.3.1 The arithmetic mean 

The most common and widely understood type of average is the 
arithmetic mean. If we have a sample of values, xi, X2...xn of some 
variable x, then the arithmetic mean of this sample, which is denoted by x 
(pronounced 'x bar'), is given by: 

x = (xj + X2 + ... + xn)/n 

1 n 

This may be written as x = ^ S xi 

As we noted earlier, the use of the subscript 'i'n is a convention to indi­
cate the observation under consideration. Thus, S means the sum of all the 
observations, from the first to the nth; similarly 2 means the sum of the 
second, third and fourth observations, and so on.'r2For the rest of this 
course we will be referring to the sum of n observations. Usually, for the 
sake of simplicity, we will abbreviate this and just use the symbol S on 
its own, and will omit the subscript i. So we will write the formula for 
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the mean as simply x= Ex /n , and we understand t ha t t h i s i s r e a l l y a 
shorthand way of writing J. £x£. 

n j<i 

We can express the same idea in words by saying that the arithmetic 
mean of a set of values is given by the sum of the values divided by the 
number of values in the set. The arithmetic mean is easy to calculate and 
will always exist for any set of values. 

We use the symbol x to stand for the arithmetic mean of a sample, and 
we use the Greek letter \X (mu) to stand for the mean of a population. For 
a finite population we will have:/U=lSx. Often we calculate x and use it 
to try to estimate y,. Obviously, if we have an infinite population it is 
impossible to calculate//., and then there is no alternative but to use x to 
estimate ylt. 

Calculating the arithmetic mean of a frequency 
distribution 

The mean which we discussed above is sometimes called a simple mean. 
and each value in the set is given the same weight, or importance. In the 
case of a frequency distribution, the mean must be obtained as a weighted 
mean. 

We will first consider the simpler case of a discrete frequency 
distribution, and will use as an illustration the data on powered fishing 
boats per village, which we used in the previous topic. To calculate the 
mean number of powered boats per village, it is not correct to calculate a 
simple average of the different numbers of boats (0, 1, 2, etc.) shown in 
that distribution. There are many more villages with three boats than with 
one boat, for instance, and we have to take this into account. 

In addition, we have to deal with the last group, '6 or more'. Since 
the frequency of this group is small, not much error will be introduced by 
the way we treat it; in this example we shall assume an average size of 7 
boats per village for all units in this last class. 

The arithmetic mean in this example is obtained as the sum of the 
products of the two columns of data, divided by the total number of 
observations, as follows. 

of powered 
ioats 
(x) 

0 
1 
2 
3 
4 
5 
6 or more (Est. 

Total 

No. of 
villages 

(f) 

20 
7 
12 
28 
17 
10 

= 7) 4 

98 

Product 
(fx) 

0 
7 
24 
84 
68 
50 
28 

261 

The arithmetic mean number of boats per village is then 261/98 = 2.66. 
We may note that, if we had gone back to the raw data and calculated the 
mean of the 98 individual observations we would have obtained almost 
exactly the same result. The only reason we have to say 'almost' exactly 
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is that we do not know the precise values for the 4 villages in the 
open-ended '6 or more' class. 

Just as we had a mathematical formula for the arithmetic mean of a set of 
numbers, so we can derive a similar formula for use with a frequency 
distribution. In this case we call the number of classes 'k', the value 
for the ith class will be denoted by xi and the frequency of each class 
by f£. The formula for the mean x is then given by: 

x = £ fjxi / £ fi 
i = 1 i = 1 

In words this says that the mean of the distribution is given by the sum of 
the frequency of each class multiplied by the value of the variable for 
that class, all divided by the total frequency. 

We will abbreviate this formula by omitting reference to i and k, as 

x = E f x / £ f 

In the example above, E f x= 261 and Sf (which is equal to n) =98. 
We may note that there are 7 classes in the frequency distribution, so 
k = 7. 

When dealing with a continuous distribution we use the class mark as 
our values of x, as in the following example using the yellowfin data from 
the previous topic: 

Class 
(kg) 

2.0 - 2.9 
3.0 - 3.9 
4.0 - 4.9 
5.0 - 5.9 
6.0 - 6.9 
7.0 - 7.9 

Total 

CI ass Mark 
(x) 

2.45 
3.45 
4.45 
5.45 
6.45 
7.45 

Ef 

Fr 

= 

equency 
(f) 

7 
19 
16 
12 
6 
3 

63 

Frequency x Class Mark 

E fx = 

(fx) 

17.15 
65.55 
71.20 
65.40 
38.70 
22.35 

280.35 

x = Sfx/Sf =280.35/63 =4.45 

The arithmetic mean in this case is obtained as the weighted mean of 
the class marks or midpoints of the class intervals, the weights being the 
frequencies, f£, or relative frequencies, f̂ / Efi- What we have done 
is to assume that all the units in a class interval have the corresponding 
midpoint as their value. 

It follows then that we cannot expect the arithmetic mean we have 
calculated to be exactly the same as the mean we would obtain by going back 
to the individual raw data. In fact if we make the calculation of the 
arithmetic mean from the 63 individual observations of yellowfin weights, 
we find that x = 278.9/63 = 4.43. 

The arithmetic mean has a lot of advantages as an average: it is easy 
to calculate, most people understand it, and it is easy to use in more 
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advanced statistical work. It does, however, also have some disadvantages 
which can produce difficulties in some situations. The value of the 
arithmetic mean can be quite affected by one or two large observations, 
especially in a small sample; this can happen when we have a non-normal 
distribution. In this kind of situation, using the arithmetic mean may be 
misleading. 

For instance, in distributions of income, which are strongly skewed to 
the right, it is not unusual for the incomes of a few very rich people to 
be so large that they pull the arithmetic mean to a higher level than is 
earned by the great majority of people. 

In similar fashion, the arithmetic mean of a bi-modal distribution 
quite often falls between the two peaks, and is therefore not a good 
representation of the distribution. 

The other difficulty that can arise with the arithmetic mean is that 
we can obtain a value that obviously does not exist. There is no problem 
with continuous data: it is easy enough to envisage a mean weight of 4.45 
kg, for example. However, for discrete data the situation is different. 
We calculated the mean number of boats per village as 2.6. Obviously we 
cannot have 0.6 of a boat, and many non-statisticians find this kind of 
answer difficult to understand. We could round the answer to the nearest 
whole number, in thi s case 3, but we lose a lot of information if we do. 
What we have to realise is that the arithmetic mean is an artificial 
concept; we use it because it is convenient, not because it has any natural 
meaning. If we found that the mean number of boats had been 2.2 in 1980 
and is 2.6 in 1984, we could draw some conclusions about trends. We can 
use the mean to make useful comparisons, but we must not assume that the 
mean value must actually exist. 

4.3.2 The median 

The median is a very simple concept which can be quite useful in 
practice, although it is difficult to deal with mathematically. It is the 
value of the middle observation of a set of numbers; half the numbers will 
be larger than this value and half will be less. For data in the raw form 
all we have to do is to rank the observations in order of size, and the 
median will be the value of the middle one. If we have n observations, the 
median will be the value of the n+i th observation. 

2 
If n is odd there is no problem, but if n is even there are two middle 

observations; in this case we take the median to be the arithmetic mean of 
the two values. As an example, consider the following three sets of 
observations, which have been sorted into size order. 

(a) 19, 22, 26, 31, 34, 37, 42, 44, 49, 55, 63 

(b) 12, 19, 23, 27, 30, 30, 47, 49, 60, 93 

(c) 128, 186, 193, 207, 218, 222, 286, 346 

In set (a) there are 11 observations; the median is given by the 6th 
one, so is equal to 37. In set (b) there are 10 observations; the median 
is given by the mean of the 5th and 6th ones, and as each of these is equal 
to 30, there is no problem in obtaining 30 as the median value. In set (c) 
there are 8 observations so the median value is the arithmetic mean of the 
4th and 5th observations, i.e. the median = (207+218)/2 = 212.5. 
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To calculate the median from a frequency distribution we use the same 
principle, but we start by determining the class within which the median 
value lies. If this class contains a single value, then there is no 
problem. If, however, it contains a range of values, then we have to 
estimate the median value, using simple interpolation. For the second 
case, because we are dealing with a range of values, we use the formula 
n/2, not (n+l)/2 to determine the median observation. This is illustrated 
in Table 4.2. 

TABLE 4.2 : CALCULATION OF THE MEDIAN FOR A FREQUENCY DISTRIBUTION 

(I) Using our powered fishing boats example: 

No. of 

0 
1 
2 
3 
4 
5 
6 

boats 

or more 

Fr< squency 

20 
7 
12 
28 
17 
10 
4 

Cumulative frequency 

20 
27 
39 
67 
84 
94 
98 

The median value is given by the (98+l)/2th observation, i.e. by the 
mean of the 49th and 50th. These lie in the class "3 boats per village", 
so the median is 3. 

(II) Using our yellowfin weights example: 

Class 
(kg) 

2.0 - 2.9 
3.0 - 3.9 
4.0 - 4.9 
5.0 - 5.9 
6.0 - 6.9 
7.0 - 7.9 

Frequency 

7 
19 
16 
12 
6 
3 

Cumulative frequency 

7 
26 
42 
54 
60 
63 

In a frequency distribution, the median position is n/2, not (n+l)/2 
as in the case of an array. With 63 observations, the median position is 
the 63/2th or 31.5th. From the cumulative frequency column we see that the 
31.5th position falls in the class 4.0 - 4.9 kg with actual class limits 
3.95 - 4.95. There are 26 observations prior to the interval beginning 
3.95, and 16 in this interval, so we calculate the median weight as 
3.95+(31.5-26)/16xl.0. Thus the median is equal to 4.3 kg. 

Once again we must recognise that (as for the arithmetic mean) the 
calculation of the median which we obtain from a frequency distribution is 
only approximately the same as we obtain from a list of all the individual 
observations. Indeed if we refer back to our original 63 yellowfin weights 
and sort them into order, we find that the (63 + 1)/2th (or 32nd) value is 
4.1 kg. 
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Another way to determine the median is directly from the ogive of the 
frequency distribution. In this case, though, the accuracy of the median 
is determined by the accuracy with which the graph is plotted. We draw a 
horizontal line from the y-axis at the position corresponding to the median 
observation, and from the point where this line cuts the ogive, we draw a 
vertical line. The point where this vertical line meets the x-axis gives 
us our reading of the median value. 

If the ogive of our example is accurately plotted, as in Figure 4.1 
below, we should be able to observe that the median (i.e. the 31.5th) 
value is 4.3 kg, which is the figure we have already calculated from the 
frequency distribution. 

4.3.3 Quartiles 

The median is the value of that observation which divides the total 
frequency into two equal parts. In the same way we can determine other 
values which divide the frequency into other fractions. The most important 
of these are called the quartiles. Quartiles, as their name suggests, 
divide the total frequency into four equal parts. 

The first, or lower, quartile will then have one quarter of the 
observations less than this point and three quarters greater. The middle 
quartile is equivalent to the median. The upper quartile has three 
quarters of the observations less than this value and one quarter more. 

In an array, the lower quartile is the (n + l)/4th value, the middle 
quartile (which corresponds with the median) is the (n+l)/2th value, and 
the upper quartile is the 3(n+l)/4th value. For the 63 observations of 
yellowfin weights we can see that the lower quartile is the 16th value and 
the upper quartile the 48th. A study of the individual weights, sorted 
into order, will show that the quartile values are 3.3 kg and 5.4 kg 
respectively. 

Whenever the quartile lies between two values, the value of the 
quartile is calculated by interpolation as in the case of the median. 

A similar method is used even for a frequency distribution, 
interpolating (as in the case of the median) within the quartile class. 
However, the quartile positions become n/4th, n/2th and 3n/4th. In our 
example QL is the 63/4th or 15.75th position. This falls in the 3.0 -
3.9 class, being the 15.75-7 or 8.75th item into this class. Therefore 
QL = 2.95+(15.75-7)/19 = 3.41, or 3.4. A similar calculation will give 
us a value for the upper quartile of 5.4 kg. These values can be compared 
with those obtained from the raw data, as shown above. 

Later in this topic we will use the quartiles to determine a measure 
of the spread or dispersion among the observations. 

Apart from splitting the total frequency into quarters we could use 
other fractions, or percentages, and we associate the word percentiles with 
these. There are also special names for certain commonly used fractions, 
e.g. deciles (which split the total frequency into 10 groups) and 
quint iles (into 5 groups). We should note here that these are not 
averages, since they do not give us a central value to represent the 
distribution, but it is convenient to discuss them at the same time as we 
discuss the median, which .is. an average. All of these measures can be read 
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directly from an ogive, and we illustrated that in Figure 3.6. The 
derivation of the median and quartiles for the yellowfin data is shown in 
Figure 4.1. 

o 
c 
CD 

V 

FIGURE 4.1 : CUMULATIVE FREQUENCY OF YELLOWFIN WEIGHTS SHOWING 
POSITION OF THE QUARTILES 
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The median and other percentiles are very useful when we want to 
describe what is happening in certain types of distribution. Quite often, 
for example, we would like to find out about part of a distribution, the 
poorest 20 per cent of fishermen, the largest 20 per cent of skipjack, and 
so on. By calculating percentiles we can do this, and we can compare 
values between distributions. 

We also find that for skewed distributions (ones that are 
symmetrical), the median is often a better measure of the av 
than the mean. Figure 4.2 illustrates this; it shows the posi 
mean and the median for a symmetrical and a skewed distribut 
distribution that is almost symmetrical, the value of the med 
mean are very similar, and both are good measure of the aver 
distribution skewed to the right, however, the mean will be to 
the median. In the sense of actually representing the data the 
be more useful; it is more stable, is not affected by the inc 
few very large values, and hence is probably better to use for 
of comparison. 

not almost 
erage value 
tion of the 
ion. For a 
ian and the 
age. For a 
the right of 
median may 
lusion of a 
the purposes 

4.3.4 The mode 

If a population distribution has a peak in its distribution function 
at a certain point then there is said to be a mode at that point. Like the 
arithmetic mean and the median, the mode is a type of average. 
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When dealing with sample observations the concept of the mode is most 
useful in connection with frequency distributions. For a discrete 
distribution the mode is that value which occurs most often. For instance, 
in our earlier illustration of the number of powered boats, the modal value 
is 3 boats per village, because more villages had 3 boats than any other 
number. We may consider that this is a more useful summary of our 
information than is the arithmetic mean of 2.66 boats. It is interesting 
to note that in this case the median value is also 3. 

For a continuous distribution the determination of the mode is rather 
complicated, and so for our purposes we shall be concerned only with the 
modal group or class. This is the class with the highest frequency (that 
is, 3.0 to 3.9 kg in the yellowfin data, for example), in a distribution 
which has equal class intervals. 

However, determining the modal group for continuous frequency 
distributions, particularly where the distribution is a sample from a 
population, often produces problems. The modal group will very largely 
depend on how the classes are defined, and for data with a fairly even 
distribution between classes, a change in the definition of the classes can 
change the modal group. The smaller the sample, the more likely this is to 
happen. For instance, if we had grouped the yellowfin data into 3 classes, 
namely, 2.0-3.9 kg, 4.0-5.9 kg and 6.0-7.9 kg, we would find that the class 
with the highest frequency is 4.0-5.9 kg, so we would have quite a 
different modal class. Various different groupings, e.g. into a large 
number of smaller classes, would give us different results again. For this 
reason, the mode is of limited value, and should be used with care. 

Diagrams illustrating the relationship between the arithmetic mean, 
the median and the mode for the most common distributions are given in 
Figure 4.2. 

4.3.5 Summary of the different types of average 

We have looked at three main types of average: the arithmetic mean, 
the median and the mode. All three of these have both advantages and 
disadvantages when used to describe or summarise a set of data. The mean 
is the most widely known and most widely used, but can be misleading when 
dealing with skewed distributions. In this situation the median, and 
various percentiles can be more useful, particularly when making 
comparisons between distributions. The mode has limited value, and should 
not be used with small samples. 

When we come to the problems of statistical inference, however, we 
almost always use the arithmetic mean. The reason for this is purely 
mathematical convenience. It is much easier to deal with the mean to 
derive more complex results; the ways the median and the mode are defined 
make these much more difficult to use. We tend, therefore, to concentrate 
on the mean just because this helps us when we want to study more 
complicated areas of statistics. 

There are also other types of average, which we will not discuss in 
this course. The best known are the geometric mean (which is most useful 
for measuring rates of change) and the harmonic mean. 
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FIGURE 4.2 : THE RELATIONSHIP BETWEEN THE ARITHMETIC MEAN, 
THE MEDIAN AND THE MODE 
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4.4 Measures of d i s p e r s i o n 

4 . 4 . 1 Basic p r i n c i p l e s 

In the two previous s e c t i o n s we have d i s c u s s e d ways i n which we can 
summarise s t a t i s t i c a l da t a , and can p r e s e n t i t in a s t r a i g h t f o r w a r d way 
which w i l l be f a i r l y r e a d i l y unders tood. The frequency d i s t r i b u t i o n i s a 
method to summarise i n f o r m a t i o n i n t a b u l a r or g r a p h i c a l form, w h i l e an 
average (such as the a r i t h m e t i c mean) summarises t h i s informat ion i n t o one 
s ing l e number. 

We must r e c o g n i s e , h o w e v e r , t h a t w h i l e i n s u m m a r i s i n g we a r e 
a t t empt ing t o d i s t i l from a mass of da ta the e s s e n t i a l f e a t u r e s which need 
t o be h i g h l i g h t e d , i n so d o i n g we a r e a l w a y s l o s i n g some of t h e 
informat ion . We have to be very care fu l t h a t in the p r o c e s s we do no t go 
too f a r , and leave out of our summary informat ion which i s n e c e s s a r y f o r a 
proper unders tanding of the s i t u a t i o n . We w i l l see in t h i s s e c t i o n t h a t an 
a v e r a g e , on i t s own, i s o f t e n i n s u f f i c i e n t t o d e s c r i b e a p o p u l a t i o n 
a d e q u a t e l y . In p a r t i c u l a r when we a r e e n d e a v o u r i n g t o c o m p a r e t h e 
c h a r a c t e r i s t i c s of d i f f e r e n t p o p u l a t i o n s , some f u r t h e r measure in a d d i t i o n 
to the average i s u sua l ly r e q u i r e d . 

Consider , for example, Figure 4 .3 where t h e r e a r e two d i s t r i b u t i o n s 
shown. Both have the same average v a l u e , w h e t h e r measured as a mean, a 
median or a mode, but we cou ld no t say t h a t t h e d i s t r i b u t i o n s were t h e 
same. To desc r ibe and compare them we need a d d i t i o n a l in format ion ; we need 
a l t e r n a t i v e ways of desc r ib ing the d i s t r i b u t i o n s . From the diagram we can 
see t h a t d i s t r i b u t i o n B i s much more s p r e a d ou t t h a n d i s t r i b u t i o n A; i n 
t h i s s e c t i o n we s h a l l look a t d i f f e r e n t ways of measur ing t h i s s p r e a d , or 
d i s p e r s i o n . 

FIGURE 4 .3 : COMPARISON OF TWO DISTRIBUTIONS 

bution A 

Distribution B 
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We want to measure dispersion for two main reasons. In the first 
place we may well be interested in the actual level of dispersion and in 
comparing this with another distribution. The second reason for wanting to 
measure dispersion is that, even when we only want to compare average 
values, we still need to take variability into account. We want to be able 
to distinguish between differences that might have just happened by chance 
and those that indicate some real change. 

In this topic we shall consider four different measures of dispersion, 
which are basically of two types: 

(a) measures of the distance between certain representative 
values of the population; and 

(b) measures of the deviation of every member of the population 
from some specified central value. 

As examples of the first type of measure of dispersion we shall look 
at the range and the interquartile range, while under the second type we 
shall consider the mean deviation and the standard deviation (or the square 
of this, the variance). 

4.4.2 Measure of the distance between selected points 
of the distribution 

The most obvious way of measuring the dispersion in a set of 
observations is to calculate the range. which is just the difference 
between the smallest and the largest values. This is simple to understand 
and easy to calculate and so has an obvious appeal. It is used in 
practice, but is only really useful when the variable under consideration 
has a fairly even type of distribution over the range. It has some obvious 
drawbacks which tend to restrict its use in practice; some of the more 
important disadvantages are: 

(a) Because the range is the difference between the smallest 
and the largest values, it is very sensitive to very 
large or very small observations; the inclusion of just 
one freak value will affect the range. 

(b) The range depends on the number of observations. 
Increasing the number of observations can only increase 
the range; it can never make it less. This means that 
it is difficult to compare ranges for two distributions 
with different numbers of observations. 

(c) The range ignores most of the observations; for example, 
the following sets of data all have the same range, even 
though we can see that the degree of dispersion is 
different. 

(i) 3, 5, 7, 9, 11, 13, 15, 17 
(ii) 3, 3, 3, 3, 17, 17, 17, 17 
(iii) 3, 3, 3, 3, 3, 3, 3, 17 

(d) It is difficult to calculate the range for data grouped 
in a frequency distribution. All we can really do is 
take the difference between the lower limit of the first 
class and the upper limit of the last class. This will 
obviously depend on our definitions of the classes, and 
is impossible if we have an open-ended class. 
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We can get round most of the disadvantages of the range as a measure 
of dispersion by using other points in the d i s t r ibu t ion rather than the two 
extremes. An obvious choice would be to measure the in t e r -qua r t i l e range -
the difference between the upper and lower qua r t i l e s . Another a l t e r n a t i v e 
would be to use the difference between the 10th and the 90th p e r c e n t i l e . 
As measures of d i s p e r s i o n , both these a re q u i t e u s e f u l . They are not 
affected by one or two wild observations, they are l e s s dependent on the 
number of o b s e r v a t i o n s , and they w i l l tend to d i f f e r e n t i a t e between 
different sets of observations. In the case of frequency d i s t r ibu t ions , we 
can nearly always calculate these d is tances , the only problem being when 
one of the percent i les or quar t i l es f a l l s in an open-ended c l a s s . 

The in t e r -qua r t i l e range in p a r t i c u l a r i s a f a i r l y good measure of 
dispersion, that i s reasonably easy to calculate and which most people find 
fa i r ly simple to unders tand . I t can be used to measure the amount of 
dispersion and to make simple comparisons between d i s t r i bu t ions . Quarti les 
are far enough from the ends of the d i s t r i b u t i o n to make i t extremely 
unlikely that they wil l f a l l within an open-ended c lass . In fac t , if there 
is an open-ended class in a d i s t r i b u t i o n , the i n t e r - q u a r t i l e range w i l l 
probably be the only one of our four measures of d i s p e r s i o n which we can 
calculate accurately. All the other measures wi l l require some assumption 
to be made about the open-ended c l a s s . 

In prac t ice , the quar t i l e deviation is often quoted; t h i s i s defined 
as one half of the i n t e r - q u a r t i l e range and provides a r e s u l t t ha t i s 
comparable with other measures of dispersion. The major drawback, however, 
comes when we want to undertake more advanced s t a t i s t i c a l work. I t i s 
d i f f icu l t to deal mathematically with qua r t i l e s , so in pract ice we tend to 
concentrate on other measures of dispersion. 

4.4.3 Measures of deviation from a specified central value 

With th is type of measure of d i s p e r s i o n we use every value in the 
d is t r ibu t ion and find the average distance between every obse rva t ion and 
some central point . In theory, we could use any central point we l i ke , the 
median, the mode, or whatever, but in pract ice we use the a r i t h m e t i c mean 
for reasons of mathematical convenience. What we need to do, then , if to 
f ind the d i f fe rence between each obse rva t ion and the mean, and t h e n 
calculate the average of these dis tances. There i s , however, one immediate 
problem which we can i l l u s t r a t e with the following simple set of data: 

3 , 5, 7, 9, 11, 13 

The a r i t h m e t i c mean i s (3+5+7+9 + 11 + 13)/6=8 and t h e d i f f e r e n c e s , or 
dispersions, of each observation from the mean are : 

- 5 , - 3 , - 1 , +1, +3, +5. 

The total dispersion is zero, and in fact this will always be true. 
Because of the way we define the mean, the total dispersion of all the 
observations from that value will always be zero; it is a check on the 
accuracy of our calculations. We cannot, therefore, use the values exactly 
as they are. 

What we are interested in, in fact, is the actual size of the 
dispersion, regardless of the sign, and so one possible solution would be 
to take the average value disregarding all signs. In our simple example, 
then, our total dispersion would be: 

5+3+1+1+3+5=18, and, since we have 6 observations, 
the average will be 18/6=3. 
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This is a good measure of dispersion, and we call it the mean 
deviation; it is the average deviation of all observations from the mean, 
disregarding all signs. For a general sample, xj x£ . . . xn we can 
write the formula for mean deviation as 

1 n i _ — i 1 l _ — I 
_ 2 | x x or> more simply =- S |x xl 

The symbol I... I stands for modulus, or mod for short, and it means - take 
the absolute value, ignore all signs. 

Although the mean deviation is a good measure of dispersion, and one 
that most people find quite easy to understand, we do not use it much. The 
reason for this is that it is difficult to manipulate the modulus of a 
number mathematically, which means that the mean deviation cannot be easily 
used in more advanced statistical work. 

A.4.4 Standard deviation 

Instead, we calculate the standard deviation, which we obtain as 
follows: 

As before, we work with the deviations from the arithmetic mean; 
in our example we had: 

-5, -3, -1, +1, +3, +5. 

In this case we square these deviations, which will give us the 
following: 

25, 9, 1, 1, 9, 25. 

All these numbers are positive. We now take the average of 
these squares, i.e. 

(25+9+l+l+9+25)/6 = 70/6 = 11.67 

Since we have squared all the deviations, we should return to 
the magnitude of the original units, and so we take the square 
root of this result, i.e. 

standard deviation - vll.67 = 3.4 

If we are concerned with a population, we use the symbol^ (sigma) to 
stand for the standard deviation, and in general terms C is given by: 

/N (x _uf _ I -2 
& -../ II i ^ which we will simplify to: a ~ \ ^ (x - M ) 

V i=1 N V N 

whereyU. of course, is the mean of the population. 

For a sample, the situation is a little different; we can use the 
symbol s to stand for the sample standard deviation and this is given by: 
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Here, we use the divisor n-1, where for a population we use N. If the 
sample size is large, this will make little difference. The reason that we 
use n-1 is that, in this case, s provides an unbiased estimate of U . In 
other words, if we took many different samples and calculated s for each 
one, the mean of these values would approach the population value. This 
would not be true if we used the divisor n. 

The square of the standard deviation is called the variance. and we 
sometimes use this to avoid having to take square roots. The population 
variance is denoted by a2, and equals S(x- /2)2. while the sample variance, 
ŝ  equals S(x-x~) . N 

n-1 
As it stands, it is quite a cumbersome procedure to calculate the 

standard deviation of a large set of numbers. First of all we have to 
determine the mean of the set, then calculate the deviations of each 
observation from the mean, square these, add them up and take the square 
root of the result. Even with a calculator this will require each value to 
be entered twice, and can take some time. 

We can, however, make the calculation much easier by rearranging the 
formula for the variance. For a sample we have: . 

S = Vn^T ® x 2 " i £x) 2 ) 

and for a population 

-vT (Ex2 - £ (Ex)2 ) 
Although this second formula looks more complicated than the first, it 

is in fact much easier to use with a calculator. We can observe that in 
this formula we do not have to start by calculating the arithmetic mean, so 
we can save one step in the calculation process. Using the memory function 
on the calculator, we can now calculate the standard deviation without 
having to write down any intermediate results. 

We can use the second version of the formula to give us a fairly 
simple method for calculating the standard deviation of a frequency 
distribution. We shall use as an example the yellowfin data to illustrate 
this. The relevant calculations are as follows: 

Weights 
(kg) 

2.0 - 2.9 
3.0 - 3.9 
4.0 - 4.9 
5.0 - 5.9 
6.0 - 6.9 
7.0 - 7.9 

Class Mark 
(x) 

2.45 
3.45 
4.45 
5.45 
6.45 
7.45 

Frequency 
(f) 

7 
19 
16 
12 
6 
3 

Total 63 

fx 

17.15 
65.55 
71.20 
65.40 
38.70 
22.35 

80.35 

fX2 

42.02 
226.15 
316.84 
356.43 
249.61 
166.51 

1357.56 

The standard deviation, s / _ 1 _ ,„,. 2 — /vir \2 \ 
= V 2 f - T " 2F (2fx)z) 

= V 62 (1357.56 - 1247.56) 

= 1.33 
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We use Sf-1 which is another way of writing n-1, as the denominator, 
because the data are from a sample. 

If we wanted to write out the formula for the variance of a frequency 
distribution in full, it would be: 

s2 - IT— ( E f • ** 
Ef.-l \ i=1 x x 

i = 1 l 

in the case of a sample. 
One interesting feature of the standard deviation in respect to the 

normal distribution may be mentioned here. If the population is 
distributed normally about the mean, then approximately 68 per cent of all 
values will lie within one standard deviation of the mean, and about 95.5 
per cent will lie within 2(7. Thus, for a normal distribution with a mean 
of 88 and a standard deviation of 17, about 68 per cent of all values will 
lie in the range 88-17 to 88+17 (i.e. between 71 and 105) and 95.5 per 
cent will be within the range 54 to 122. We can demonstrate this 
graphically, as shown in Figure 4.4, by plotting the normal curve, and 
vertical lines drawn from the x-axis at values 71 and 105 would enclose 68 
per cent of the total area under the curve. This particular property will 
hold true for a normal distribution, no matter how widely spread the values 
are. It will be very useful in our understanding of standard errors, which 
will be discussed later in the course. 

FIGURE 4.4 : NORMAL PROBABILITY DISTRIBUTION, MEAN 88, S.D. 17 
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The s tandard d e v i a t i o n i s by f a r t h e most w i d e l y used of t h e four 
measures of d i s p e r s i o n . As we w i l l see i t i s a l so used in the c a l c u l a t i o n 
of sampling e r r o r s . Although i t i s so widely used, t h i s does not mean tha t 
i t i s super io r in every r e s p e c t . I t s main weakness i s t h a t i t i s v e r y 
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g r e a t l y a f fec ted by extreme v a l u e s , much more so t h a n i s t h e mean 
deviation. This occurs because the dev i a t i ons from the mean (which are 
already large in the case of extreme values) become very large indeed when 
they are squared, as they are in the calculat ion of the standard deviation. 

4.4.5 Summary of the different measures of dispersion 

There are two ways we can measure the degree of dispersion in a set of 
observations: we can look e i ther at the d i f fe rence between two po in t s in 
the d is t r ibu t ion or at the average deviation of a l l the obse rva t i ons from 
some cent ra l p o i n t . Examples of the f i r s t type are the range and the 
quar t i le deviation. These are fa i r ly easy to c a l c u l a t e , have an obvious 
meaning, but ignore q u i t e a l a rge par t of t h e d a t a . The r a n g e , in 
pa r t i cu la r , is unstable and i s affected by wild observations; the q u a r t i l e 
deviation is more stable and bet ter to use in p rac t ice . Both measures a re 
d i f f i cu l t to deal with ma themat ica l ly . Examples of the second type of 
measure are the mean deviation and the standard deviation. In p r a c t i c e we 
use the standard deviation because i t i s , mathematically, more convenient. 

Average v a l u e and d i s p e r s i o n a r e not t h e only p r o p e r t i e s of 
d i s t r ibu t ions we can measure, but we general ly concen t ra te on j u s t these 
two. The reason for t h i s i s t h a t , for a l a rge c l a s s of symmetrical or 
almost symmetrical d is t r ibut ions with a s ing le mode, we can f i t a normal 
d i s t r ibu t ion q u i t e e a s i l y . This w i l l allow us to make many important 
inferences concerning the data. One very important proper ty of a normal 
d i s t r ibu t ion is that the only things we need to know are the mean and the 
va r i ance (or s tandard d e v i a t i o n ) . Once t h e s e a r e d e t e r m i n e d , t h e 
d i s t r ibu t ion is fixed. So, to f i t a normal d i s t r ibu t ion to a set of d a t a , 
a l l we have to do is to calculate i t s mean and variance. 
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TOPIC 5 - RELATIONSHIPS : LINKS BETWEEN TWO OR MORE VARIABLES 

5.1 Introduction 

In the previous two topics, we concentrated entirely on distributions 
and measures of one variable; but in reality, we normally collect data on 
several items at once. We are interested in links, or relationships, 
between the different variables (or, sometimes, between variables and 
attributes). 

For example, the fish catch by a local fishery would be affected by 
many factors, which may include the following: 

- the number of people and boats engaged in fishing 
- fishing technique used 
- weather conditions prevailing 
- the surface temperature of the water 
- the effect of other fisheries operating nearby. 

No doubt many other items could be added to the list. The mathematics 
of trying to measure the interrelationships of all of these factors would 
be very complicated. This is referred to as 'multivariate' analysis, and 
is beyond the scope of the present course. 

We can, however, study the relationship between two variables. Data 
on two variables are termed bivariate data, and if these are plotted as 
points on a graph, with one variable on each axis, we have what is known as 
a scatter diagram. We introduced this briefly in Topic 2. If we look back 
to Figure 2.1, we see that it demonstrated a relationship between fish 
catch and number of boats engaged. Similarly, Figure 2.2 showed the 
relationship between total fish catch and time. In fact in that diagram we 
drew lines to link up the points on the graph, but we need not have done 
so. If we had omitted the lines, and plotted only the points, we "ould 
have had a scatter diagram of exactly the same type as Figure 2.1. 

5.2 Regression 

Finding a mathematical formula to describe the relationship 

So the purpose in drawing a scatter diagram is to try and get some 
idea of a simple relationship between two variables. We are not trying to 
find some mathematical formula that will go through all the points exactly. 
It is theoretically possible to do this, but the formula would be too 
complicated to be of practical use. What we would like is some kind of 
simple formula that 'fits' or describes the data fairly well. If we can do 
this, then we have some kind of model that tells us something about the 
underlying process that produced the data and can help us to make 
predictions or other decisions. Now with two variables, x and y, the 
simplest kind of relationship between them is shown on a graph as a 
straight line. This means that if we increase 'x' by a constant amount 
then 'y' will also increase by a fixed amount. 

Mathematically, we can represent a straight line by the equation, or 
formula, y = a+bx; a and b are constants where 'a' represents the point at 
which the line meets the y-axis, and 'b' represents the slope of the line. 
This is shown in Figure 5.1. By changing the value of a and b we change 
the position of the line on the graph. If the line goes from the bottom 
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left hand corner to the top right hand corner, then the slope b will be 
positive. If it goes the opposite way, from the top left hand corner to 
the bottom right, then the slope will be negative, and b will be a negative 
number. 

FIGURE 5.1 THE EQUATION OF A STRAIGHT LINE 

Positive slope 

Negative slope 

When we have a scatter diagram, what we want to do is to find a line 
which best 'fits' the data, that is, which is closest, in some sense, to 
all the various data points. This means, effectively, to find values for a 
and b, since it is these two values that define the line. We can undertake 
this process by eye. Using a scatter graph and a transparent ruler we can 
move it until it appears to be the best 'fit' to the data, but this is 
rather unscientific. We have no guarantee that two different people will 
produce the same line for the same data. Their ideas of the line of 'best 
fit' may be rather different, and so it will be very difficult to 
generalise. Instead of using this method then, we use a mathematical 
technique in which a and b are calculated from the data values (x^, 
yj.). 

Even when we try to develop a mathematical technique, there are some 
problems which really arise from the basic situation we are dealing with. 
In Topic 2, we introduced the concept of independent and dependent 
variables. We saw that we often had the situation where we were interested 
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in looking at the way one variable changed as the value of some other 
variable was altered. So in Figure 2.2, we saw how the level of fish catch 
changed over time. In this example we say that total catch 'depends' upon 
time, and therefore total catch, being the dependent variable, must be 
plotted on the y-axis. In similar fashion, in Figure 2.1, fish catch was 
the dependent variable in its relationship to number of boats engaged. It 
is this type of relationship, in which one variable is dependent on 
another, that we are concerned with when we try to find a line that best 
fits the data. The purpose of finding the equation of the line, of 
estimating the values a and b, is that we can then estimate different 
values of y, given the appropriate values of x. 

There are many criteria by which we might define what we mean by 'best 
fit', but the generally accepted method is the least squares criterion. By 
this we mean that we will seek to establish the formula which expresses y 
in terms of x in such a way that the sum of the squares of the differences 
between the observed values of y, and the values calculated by the formula, 
is as small as possible. 

This technique, of estimating the values of an equation of a line, is 
known as regression. The line y=a+bx is called the 'regression line' and 
the values 'a' and 'b' are called the 'regression coefficients'. The 
equation of the regression line is the formula we shall use to predict the 
values of y we are likely to get, given certain values of x. We also call 
this the 'regression of y on x'; y is the dependent variable and x the 
independent variable. In our first example in the previous paragraph, 
then, we can talk about the regression of fish catch on time. We want to 
be able to find out what level of catch we might expect at some future 
time, by use of a mathematical relationship. 

Our data consist of a series of pairs of values, x^ and y^. We 
calculate our coefficients, a and b, from these observations. We have: 

b = (jg (X;L - x) (yi - y)) /.E (XI - x)2 

or, in shorthand form: 

b = 2(x - x) (y - y) 
E (x - x)2 

and 

a = y - bx 

We shall look at the expression SCx^-x) (yi-y) again in more detail 
in the next section. We notice that the denominator of b is E(xi_x) 
and that this also appears in our expression to calculate the standard 
deviation, or the variance, of x. 

It will be recalled that we saw how we could rearrange the formula for 
the variance to make it easier to find using a calculator. So it is not 
really surprising to find that we can do the same thing for our expression 
for 'b'. The alternative formula may look more cumbersome at first sight, 
but is much more convenient for use, especially with a calculator, so we 
will always use it from now on. The formula is: 

Sxy - SxSy 

Ex2- isV 
n 
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For calculating 'a' we retain the expression given above 

a = y - bx 

It will be seen that the formula for the straight line which best fits 
the data can be calculated if we work out values for Ex, Ey, Ex2, £xy and 
n. 

We should make a cautionary note here that although this line is the 
'best fit' for our data, according to the criteria we used, this does not 
mean that it is a perfect fit, or even that it is a good one. There will 
always be one straight line which fits the data better than any other 
straight line does, but whether this fit is a good one or a bad one, will 
depend on how scattered the series of paired observations were. Later in 
this topic we will develop a measure which will show us how well the line 
actually corresponds with the data. 

Regression analysis is very extensively used in practice in estimating 
relationships between economic variables, such as demand and supply curves, 
relationships between income and expenditure, and so on. It also should 
prove very valuable in the analysis of fisheries statistics. Furthermore, 
it has great use in time series analysis, whereby we fit a straight trend 
line to data which is available, in order to estimate data which are 
missing, and most importantly in order to project forward to make estimates 
for future periods. 

Let us look at one or two practical applications. We will be able to 
see how the regression line is actually calculated, and how it can be used 
to make estimates or forecasts. 

First, let us revert to our data on boats used (which we denote x) and 
catch obtained (y) in the artisanal fishery (Table 5.1). We will calculate 
Ex, Ey, Ex2 and Exy, which we will need in order to calculate the 
coefficient 'b'. We already know that n = 10. We will also calculate 
Ey , which, although not used to calculate the regression coefficients, 
will be required for another calculation a little later. 

TABLE 5.1 : CALCULATION OF THE REGRESSION COEFFICIENTS FOR DATA 
ON BOATS OPERATING AND CATCH OBTAINED 

X 

12 
15 
10 
12 
18 
14 
6 
15 
16 
9 

127 

x = 127/10 

y 

590 
820 
330 
740 
900 
660 
240 
650 
850 
470 

6250 

= 12.7 

x2 

144 
225 
100 
144 
324 
196 
36 
225 
256 
81 

1731 

y -

xy 

7080 
12300 
3300 
8880 
16200 
9240 
1440 
9750 
13600 
4230 

86020 

6250/10 = 525 

y2 

348100 
672400 
108900 
547600 
810000 
435600 
57600 
422500 
722500 
220900 

4346100 
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Now we can s u b s t i t u t e in our formula. 

b = Exy - Sx Sv 
n 

2 x 2 - ( S x ) 2 

n 

86020 - 127 x 6250 
10 

1731 - (127)2 
10 

86020 - 79375 
1731 - 1612.9 

56.3 

625 - (56.3 x 12.7) -90 

Therefore our regression formula is y=-90+56.3x. 

In Figure 5.2, the regression line has been drawn in, and the vertical 
(y) deviation of each point on the scatter diagram from the regression line 
is also marked. What we have achieved in calculating the best fitting 
straight line to the data is to ensure mathematically that the sum of the 
squares of these 'y' deviations is the minimum possible. For any other 
line which we try to draw to fit the data, the sum of the squares of these 
deviations would be greater than for our regression line. 

FIGURE 5.2 : CATCH PER DAY BY NUMBER OF BOATS OPERATING SHOWING 
LINE OF BEST FIT AND DEVIATIONS FROM THE LINE 
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If now we want to estimate how much fish would be caught on a day when 
14 boats are operating, we simply substitute 14 for x, and we have 

y = -90 + (56.3 x 14) = 698 
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So our equation estimates that 698 kg of fish would be caught. It is 
interesting to note from the actual data that there were 14 boats operating 
on one day, and the catch was 660 kg, which is very close to the estimate 
provided by our regression line. 

We should also note that the regression line does not provide us with 
a good estimate for days when very few boats operate. For example, if 
there is only one boat operating, the equation predicts that the catch 
would be -90+(56.3xl) = -33.7 kg, which is obviously nonsense. Our 
original data did not contain any observations for very small numbers of 
boats operating, so it is perhaps not so surprising that the equation is 
not good for making estimates when that situation arises. 

Another way of interpreting the equation is to note that 'b', the 
coefficient of the slope of the line, equals 56.3. That means that the 
regression line estimates that the total daily catch will increase by 
56.3 kg for every extra boat engaged. It tells us in effect: multiply 
number of boats by 56.3 kg, but then deduct 90 kg from the estimate this 
gives. 

For our second illustration, we will look at a time series of annual 
data. We will use data on fish catch for Country ABC which we have plotted 
in Figure 2.2, but we will eliminate the observation for 1978. We assume 
that for some reason statistics were not recorded that year, and we want to 
use a regression equation to estimate what that year's catch would have 
been. We will also use the equation to forecast what catch can be expected 
in 1985 and 1986. 

We note that 'year' is plotted on the x-axis in Figure 5.3. We could 
use 1976, 1977, etc. as values of x, but we would then have to deal with 
very large numbers. It is far easier to label 1976 as year 1, 1977 as year 
2, and so on. This greatly simplifies calculations, and gives exactly the 
same answer for the predicted values of catch. 

The catch figures were not actually listed out in Topic 2, but could 
be seen fairly accurately from the graph. The actual data, together with 
calculations of Sx^, Sxy and Ey2 (which we require for a later 
exercise) are shown in Table 5.2. We should note here that n=8, because 
with data for 1978 excluded from our calculations of the regression line, 
we have only 8 pairs of observations. 

TABLE 5.2 : CALCULATIONS OF THE REGRESSION COEFFICIENTS FOR 
TOTAL ANNUAL FISH CATCH IN COUNTRY ABC 

X 

1 
2 
4 
5 
6 
7 
8 
9 

42 

x - 42/8 

y 

604 
552 
677 
621 
87 5 
880 
774 
869 

5852 

= 5.25 

x2 

1 
4 
16 
25 
36 
49 
64 
81 

276 

xy 

604 
1104 
2708 
3105 
5250 
6160 
6192 
7821 

32944 

y = 5852/8 

y2 

364816 
304704 
458329 
385641 
765625 
774400 
599076 
755161 

4407752 

= 731.5 
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Substituting in our formula we have 

b = 

a = 

32944 -

276 -

40.0 

731.5 

521.5 

42 x 5852 
8 

1764 
8 

- (40 x 5.25) 

Our equation therefore is y = 521.5+40x. This can be interpreted to mean 
that the trend line indicates estimated production of 521.5 tonnes in year 
0 (i.e. 1975), increasing by 40 tonnes per year. Figure 5.3 shows this. 

FIGURE 5.3 : TOTAL ANNUAL FISH CATCH IN COUNTRY ABC SHOWING 
LINE OF BEST FIT, Y=521.5 + 40.0 X 
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This allows us to make regression estimates for the other years, 
namely, 

1978 (= year 3) y = 521.5 + 3 x 40 = 641.5 tonnes 

1985 (= year 10) 
1986 (= year 11) 

y = 521.5 
y = 521.5 

+ 
+ 

10 x 40 
11 x 40 

921.5 tonnes 
961.5 tonnes 
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In practice we would have to qualify these estimates by making 
allowance for factors other than the long-term trend. No doubt weather 
conditions and other factors are going to have a substantial influence on 
the actual catch obtained. We can readily see from the graph that 1980 was 
quite a bad year, and 1976 and 1981 were relatively good years. So we 
should say that "without making any allowance for outside influences" our 
regression line makes estimates of annual catch as we showed above. We may 
hope that local knowledge, or other recorded information, would enable the 
regression estimates to be adjusted to take account of these outside 
influences. 

We can see indeed from Figure 2.2, which included a value for 1978, 
that that year was a relatively poor one: catch was well below that 
recorded in 1976, for instance, and our regression equation is predicting 
an increase of 40 tonnes every year. If no allowance is made for these 
external factors (such as weather) and the estimate for 1978 catch is made 
solely on the basis of the regression equation, then the level of the catch 
will be over-estimated. 

Linear regression estimates are not magical numbers which show exactly 
what would occur in given situations. They are simply best estimates based 
on certain available data, and without taking account of any data other 
than those relating to the two variables used in the regression analysis. 
Obviously the closer each paired observation lies to the regression line, 
the more accurate the estimate is likely to be, and the greater the 
confidence we can have in our estimates. A little later we will develop 
simple estimates which will indicate how closely our regression line fits 
the available data. 

One final point should be made. Because our regression line in a time 
series is only an estimate, and because it takes into account only movement 
in one variable against time, it is of limited value for making forecasts 
well into the future. In our illustration we projected forward for two 
years, and perhaps that is as far as we should go. The further we attempt 
to project beyond the points in our data set, the less reliability we can 
place on those projections. 

5.3 Non-linear relationships 

So far we have examined situations where we could reasonably expect to 
fit a straight line to the available data. All the points lie reasonably 
close to the regression line we were able to establish. 

However, often two variables will bear a clearly non-linear 
relationship to each other. For instance, it may seem apparent from a 
visual inspection of a scatter diagram that the points seem to lie more or 
less along a curve. If we look at the length-weight relationship of 
skipjack, for instance, it is apparent that the observations (with length 
plotted on the x-axis and weight on the y-axis) clearly follow a curved 
path, which slopes upwards more steeply at the right hand side of the 
graph. In other words, for larger fish there is a large increase in weight 
for a relatively small increase in length. 

Figure 5.4 is a scatter diagram of the length and weight of a sample 
of 12 skipjack, with points showing the curved pattern we would expect. 
This does not mean we cannot find a linear regression function which best 
fits these points. We can do so; there is always one line which fits a set 
of paired observations better than any other line will. In fact, a quick 
calculation will show that the equation of that line is y = -4.5+0.153x, 
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and this is plotted on the diagram. It is apparent that the regression 
line lies above the observed points for skipjack between about 35 and 60 cm 
in length, and is well below the observation for very small and very large 
skipjack. 

FIGURE 5.4 : WEIGHT BY LENGTH OF SKIPJACK SHOWING LINE OF BEST 
LINEAR FIT, Y=-4.5 + .153 X 
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If we s u b s t i t u t e in the equat ion for a s k i p j a c k of l e n g t h 28 en , we 
f i n d a p r e d i c t e d v a l u e of y ( w e i g h t ) of - 0 . 2 2 k g , w h i c h i s c l e a r l y 
nonsense. 

In such a s i t u a t i o n we can sense t h a t t h e r e must be a b e t t e r way t o 
approach the problem. In our example the p o i n t s l i e so c lose to a curve we 
can sketch in t h a t we should be able to f ind an equat ion which gives a very 
good f i t for our d a t a . 

In f a c t , i t has been e s t a b l i s h e d t h a t a r e l a t i o n s h i p between we igh t 
(y) and length (x) of f i s h conforms to the equat ion y = a . x b . Taking t h e 
logar i thm of t h i s equa t ion , we have 

l og e y = l og e a + b l o g e x 

and t h i s i s a r e l a t i o n s h i p s i m i l a r t o our e q u a t i o n f o r a s t r a i g h t l i n e 
y = a+bx. In o ther words, i f we p lo t a s c a t t e r d iagram of log y a g a i n s t 
log x, we should be able to der ive va lues of t h e c o e f f i c i e n t s log a ( t h e 
i n t e r c e p t of the y -ax i s ) and b ( the s l o p e ) , so t h a t we have a r e g r e s s i o n 
l i n e w h i c h w i l l p r o v i d e a b e t t e r f i t f o r o u r d a t a t h a n t h e l i n e 
y = -4.5+0.153x which we drew p r e v i o u s l y . 

The c a l c u l a t i o n s a r e shown in Tab le 5 .3 and t h e g r a p h w i t h t h e 
appropr i a t e r e g r e s s i o n l i n e p l o t t e d i s in Figure 5 . 5 . 

+ 

. / 

T 1 1 r— 1 1 r r-
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FIGURE 5.5 : LN (weight) BY LN ( length) OF SKIPJACK SHOWING LINE 
OF BEST FIT, Ln (Y) = -10 .82 + 3.01 Ln (X) 
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TABLE 5.3 : LENGTH AND WEIGHT DATA FOR A SAMPLE OF SKIPJACK: 
LOGARITHMIC RELATIONSHIP 

Length ( 
X 

24 
30 
39 
43 
47 
50 
54 
55 
57 
61 
64 
70 

I Clog 

I (log 

2 (log 

cm) 

x) 

x)2 

x) 

= 46.32 

= 179. 

(log y) 

Log x 

3.18 
3.40 
3.66 
3.76 
3.85 
3.91 
3.99 
4.01 
4.04 
4.11 
4.16 
4.25 

9 

= 40.57 

Weight (kg) 
y 

0.33 
0.52 
1.10 
1.64 
2.03 
2.61 
3.25 
3.56 
3.94 
4.88 
5.27 
8.01 

I (log y) = 

Log y 

-1.11 
-0.65 
0.10 
0.49 
0.71 
0.96 
1.18 
1.27 
1.37 
1.59 
1.66 
2.08 

9.65 
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and by substituting in our formula for the regression coefficients we find 

log y = -10.82 + 3.01 log x 

(or log y = log 0.00002 + 3.01 log x) 

Now if we t ry t h i s r e l a t i o n s h i p for va r ious va lues of x, we find t h e 
following: 

If length = 28 cm, log x = 3.33 
log y = -10.82 + (2.01) (3.33) 

= -0.797 
.*. y = 0.45 kg 

This i s obviously a much b e t t e r e s t imate than the p r e v i o u s e q u a t i o n 
provided. 

Similarly, if length = 43 cm, log x = 3.76 
log y = -10.82 + (3.01) (3.76) 

= 0.498 
, \ y = 1.65 kg 

and we may observe that this is almost identical with the weight (1.64 kg) 
of the 43 cm skipjack in our original data set. 

In the next section we will provide a measure which clearly shows that 
this regression line is a far better fit to our data than the first simple 
formula we derived. 

As a generalisation, we can say that when a series of paired 
observations appears to follow a simple curve, we should be able to 
establish some relationship which will permit a much better straight 
regression line to be drawn than will be obtained by the basic formula of a 
line, y = a+bx. This may involve logarithmic, square, square root or other 
functions of x and/or y. There are exceptions to this: the relationship 
between length (or weight) and age of fish is an example where it has been 
found that the relationship cannot be 'linearised'. In that case, analysis 
has to be undertaken using techniques which are far more complex than we 
have discussed here. However, the idea of finding a linear relationship 
from basic data which is non-linear is a very important one in the analysis 
of fisheries statistics. 

5.4 How well does the mathematical relationship describe the data 

In the previous section we have seen how we can fit a straight line to 
a set of data, where we have n measurements of some independent variable x, 
and n associated measurements of some dependent variable y. We used a 
straight line because it is the simplest mathematical relationship we can 
find, and we have seen that we can still sometimes fit a straight 
regression line to data which bear a non-linear relationship. It is 
obvious, however, that for some data sets a straight line is not a good way 
to describe the data. If we look, for example, at Table 5.4 and Figure 5.6 
we can see here that there seems to be very little relationship between the 
variables. 
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TABLE 5.4 : EXAMPLE OF NO CLEAR RELATIONSHIP BETWEEN VARIABLES. 
Catch per unit effort (i.e. catch per boat days 
fished) by effort (boat days fished) - series 
of 12 monthly observations. 

Effort 
(x) 

129 
328 
217 
68 
25 
2 
68 
42 
388 
426 
185 
480 

2358 

CPUE 
(y) 

4.94 
4.52 
5.14 
6.12 
9.11 
10.35 
5.72 
8.64 
9.40 
8.27 
7.05 
6.95 

86.21 

x2 

16641 
107584 
47089 
4624 
625 
4 

4624 
1764 

150544 
181476 
34225 
230400 

779600 

xy 

637.26 
1482.56 
1115.38 
416.16 
227.75 
20.70 
388.96 
362.88 
3647.20 
3523.02 
1304.25 
3336.00 

16462.12 

y2 

24.40 
20.43 
26.42 
37.45 
82.99 
107.12 
32.72 
74.65 
88.36 
68.39 
49.70 
48.30 

660.95 

Substituting in our formula as usual, we find a = 7.48 and b = -0.0015. 
The regression line therefore becomes 

y = 7.48 - 0.0015x 

This is drawn on the scatter diagram, Figure 5.6. 

FIGURE 5.6 : CPUE (CATCH PER BOAT DAY FISHED) BY EFFORT SHOWING 
LINE OF BEST LINEAR FIT, Y = 7.48 - 0.0015 X 
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We may observe that the coefficient of the slope is negative, and 
therefore the line slopes downwards to the right. This indicates that the 
higher the effort in terms of boat-days fished, the lower the return in 
terms of catch per boat day. 

We can see, therefore, that we can always find the equation of a line 
for almost any set of data. All we have to do is to perform the various 
calculations and put the values in the equations for 'a' and 'b'. But this 
is not really sufficient; we have to guarantee that when we have calculated 
the line for the data that it will provide reliable predictions. Because 
of the way we have calculated the values of a and b we know that this will 
be the best line for these data, but we do not know if the data points are 
closely grouped around the line, or if they are widely dispersed. In 
Figures 5.2 and 5.3 the data points do seem to be fairly closely 
distributed around the line we have calculated, but in Figure 5.6 we can 
see at a glance that this is not so; only 2 of the 12 points lie anywhere 
near the regression line we have drawn. Common sense would tell us that 
the predictions in the first two cases are much more likely to be reliable 
than in the third. What we need therefore is not only a method for finding 
the best equation of a line through the data, but also some measure of how 
close the data points are to the line. 

5.5 The coefficients of correlation 

If we look at any of the scatter diagrams above, we can see that the 
points do not lie exactly on the line we have drawn. Since we are 
interested in predicting the y values we can see how far each point is from 
the regression line in the y direction, that is, vertically. We call the 
vertical distance from the line to any of the data points the 'residual'. 
In effect, we can say that each observed value yi is equal to a value 
'a+bx^' plus the residual. The smaller the residuals, the closer the 
points are to the line, and the better the line 'fits' the data. One way, 
therefore, to see how close our data points are to the line is to measure 
the residuals. We can do this graphically, but we can also do it 
mathematically by calculating a value known as the correlation between x 
and y. The correlation is a measure of how close the relationship between 
x and y is to a straight line. 

Before we go on to see how we can calculate the correlation, it is 
necessary to go back and look at the expression, 

n 

2(x£ - x) (yi - y) 

which we used when calculating the slope, b, of the regression line. From 
Topic 4 we remember that to measure the variation among a set of data 
points X£, X2 •••xn we can calculate the standard deviation or the 
variance. The formula for the variance was given by: 

S (x£ - x) / (n - 1) 
i = 1 

Now this looks somewhat similar to the expression we have just written 
down. This can be looked at as measuring the joint variation of x and y 
about their respective means. We call this quantity, 

S (xi - x) (yi - y) / (n - 1) , or I(x - x) (y - y) / (n - 1) 
i = 1 

the co-var iance of x and y. I t shows how the two v a r i a b l e s change 
together. If they are closely re la ted , t h i s value w i l l be h igh ; if they 
are not c lose ly r e l a t e d , i t w i l l be smal l . Not ice , however, tha t the 
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co-variance can be negative; if the re la t ionship slopes downwards then i t 
wi l l be less than zero. 

The correlat ion between x and y is measured by a coeff ic ient , which we 
denote as ' r ' , and th i s is given by the co-variance of x and y divided by 
the product of the s tandard d e v i a t i o n s of x and y . In t e rms of a 
mathematical formula we can write i t as : 

r = S(x - x) (v - v) 
v/ECx - x)2 . L(y - y)2 

(The values (n-1) can be divided out in both numerator and denominator). 
If we only used the co-variance to measure the relationship we would have 
problems in comparing different sets of data. For example, if we changed 
the units of measurement of one, or both, of the variables, we would change 
the value of the co-variance. We get round this problem by dividing by the 
product of the standard deviations; this means that r can only be a value 
between plus and minus one. If all the data points lie exactly on an 
upward sloping line, then r will be +1; if they all lie on a downward 
sloping line, r will be -1. Values in between, then, tell us how strong 
the relationship is between x and y. 

If r is very close to +1, we say there is a strong positive 
correlation: y increases as x increases, and the relationship is good. If 
r is close to -1, there is a strong negative correlation: y decreases as x 
increases. When r is close to zero (either positive or negative) there is 
very little relationship between the two variables. 

As with all similar measures we have studied, we find that in practice 
our alternative version of the formula is more suitable for ordinary use, 
especially with a calculator. This is 

_ n S xy - E x E v 

VnEx 2 - (Ex) 2 . VnEy 2 - ( E yf 

We may note that r can be calculated if we can obtain the values of n, 
Ex, Ey, Ex2, Exy, a l l of which were used in our e a r l i e r c a l c u l a t i o n s of 
the regression coeff ic ient ' b ' , and one a d d i t i o n a l v a l u e , Ey2. I t was 
for t h i s purpose tha t we o b t a i n e d t h e v a l u e of Ey2 in our e a r l i e r 
examples in th is topic . 

If we revert to our data in Table 5 . 1 , and s u b s t i t u t e in our formula 
for ' r ' , we have 

r = 10(86020) - 127(6250) 
\/l0(1731) - (127)2 . \/l0(4346100) - (6250)2 

Vil81 . \/4398500 

This is a posi t ive value, quite close to +1, so we can say t h a t t he re 
is a good posi t ive re la t ionship between the two var iab les , according to our 
data. 

We can go through a s i m i l a r process to c a l c u l a t e ' r ' for our time 
series data on annual fish catch (Table 5 . 2 ) , and we find r = 0 .84 . In 
other words there is a good posi t ive correlat ion ( i . e . our catch is moving 
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upwards over time), but the relationship is not as strong as in the 
previous example. 

The calculation of the coefficient of correlation for our two 
alternative formulae for the length-weight relationship of skipjack is 
quite interesting. We would expect a strong positive relationship, because 
obviously weight increases as length increases. In fact, in our first 
equation, which was y = -4.5+0.153x, we can calculate that r = 0.94. This 
shows that, despite the poor estimates which the regression line gave for 
very small and very large fish, the fit of this line to the data we had 
available is good. 

However, when we examine the second equation, log y = log 
(0.00002)+3.01 log x, we find that r = 0.997. This is very close to 1, and 
clearly shows that we were able to find a much better regression line by 
our special technique of using a 'log log' relationship. 

Finally, we can look at the relationship of 'effort' to 'catch per 
unit effort', portrayed in Table 5.4 and Figure 5.6. We noted at the time 
that y was decreasing as x increased, so we must expect r to be negative; 
we also observed that the relationship appeared to be very weak, so we 
should anticipate obtaining a value for r which is closer to 0 than to -1. 
When we make the appropriate calculation we find that r=-0.13, which is so 
close to zero that hardly any relationship at all can be established. We 
could have very little confidence at all in any conclusions we attempted to 
draw from this regression equation. 

We can summarise what we have been discussing by saying that the 
regression coefficients measure the linear relationship between two 
variables, and the correlation coefficient tells us how closely the data 
fit this relationship. The two are clearly related to each other, but it 
is important not to confuse them because they measure different things. 

It is possible to go much further than this in analysis, and calculate 
'confidence limits' for our estimates. Essentially this is another way of 
expressing the goodness of fit of a relationship, but this is beyond the 
scope of this course. However, we may note that in our next topic, 
Sampling, we will be calculating confidence limits for estimates derived 
from samples, and there is a close parallel between the two. 

5.6 Seasonal variation 

Earlier in this topic, in examining links between two variables, we 
looked at an illustration of one of the most important relationships - that 
between the values of a characteristic and time. This relationship is 
referred to as a time series . 

That particular example concerned a time series of annual data, and we 
obtained a regression line which best fitted the observations and we 
referred to this as the trend line. The line endeavours to show how the 
value of the characteristic is changing in the long term. 

However, often we are vitally interested, not just in the trend in 
annual values, but in movements in the shorter term - from month to month, 
for example. We then may find that our study is complicated by a pattern 
of peaks and troughs in the value of our observations. If this pattern 
tends to repeat itself each year, we call this seasonal variation. By this 
we mean that the value of our variable tends to vary according to the time 
of the year; at some times it will be high, at others low, but the pattern 
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will tend to repeat itself regularly. This kind of variation occurs quite 
often in time series, particularly those related to production or climatic 
factors. 

If we look at the figures of tuna catch in Fiji given in Table 5.5, we 
will see that there is a very high, and quite regular, seasonal variation. 
In each of the four years covered by our data, the catch is highest in the 
first five months of the year, from January to May, and is lowest around 
August to October, being almost zero each September. 

TABLE 5.5 : IKA CORPORATION, FIJI - ESTIMATED TUNA CATCH, MONTHLY 
1979-1982. Calculation of 12-month moving averages. 

Month 

Jan. 79 

Jan. 80 

Jan 81 

Jan. 82 

Source: 

Tuna 
Catch 
(tonnea) 

594 

488 

535 

468 

566 

354 

190 

18 

2 

0 

57 

86 

330 

374 

466 

308 

72 

85 

129 

100 

31 

85 

139 

216 

819 

958 

1059 

672 

595 

464 

430 

85 

~ 
85 

159 

331 

629 

779 

762 

573 

718 

388 

150 

50 

127 

111 

268 

Annual Report 

12-nonth 
Total 

3358 

3094 

2980 

2911 

2751 

2257 

1988 

1927 

2009 

2038 

2123 

2205 

2335 

2824 

3408 

4001 

4365 

4888 

5267 

5568 

5553 

5522 

5522 

5542 

5657 

5467 

5288 

4991 

4892 

5015 

4939 

4659 

4624 

4624 

4666 

4618 

4555 

24-vonth 
Total 

6456 

6074 

5891 

5662 

5008 

4245 

3915 

3936 

4047 

4161 

4328 

4540 

5159 

6232 

7409 

8366 

92 53 

10155 

10835 

11121 

11075 

11044 

11064 

11199 

11124 

10755 

10279 

9883 

9907 

9954 

9598 

9283 

9248 

9290 

9284 

9173 

1982, Fiaheriea Division 
Hiniatry of Agriculture and Fiaheriea, 

Moving 
Average 

269 

253 

245 

236 

209 

177 

163 

164 

169 

173 

180 

189 

215 

260 

309 

349 

386 

423 

451 

463 

461 

460 

461 

467 

464 

448 

428 

412 

413 

415 

400 

387 

385 

387 

387 

382 

Fiji 
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We would like to look beyond this seasonal variation, and try to find 
how the catch, as a whole, is changing over time. Obviously we cannot just 
compare data for consecutive months. It would be quite unreasonable to 
conclude, for example, that the tuna catch is falling, just because the 
amount caught fell each month from May to September 1982. The catch falls 
in that period every year, and what we would need to establish, in order to 
get any picture of a longer-term trend, is whether the fall in these months 
of 1982 was greater or less than the fall which is usually recorded at that 
time of the year. 

There are various techniques available to calculate this seasonal 
variation. If we can obtain a measure of this variation we can eliminate 
it from our data, to give us a more meaningful trend line. This process is 
referred to as seasonal adjustment. There are now quite sophisticated 
computer programs which are widely used by statisticians all over the 
world, to seasonally adjust (or 'deseasonalise' as it is sometimes called) 
any time series data. We will not go into this topic in detail during this 
course, but we will look at the first step in the process, the moving 
average, and see how this can assist in eliminating seasonal patterns from 
data, in order to highlight the trend. 

To see how this works consider the following sets of numbers: 

4, 5, 7, 3, 6, 4, 5, 3, 7, 6, 3, 4. 

The average ( a r i t h m e t i c mean) of t h e f i r s t t h r e e numbers i s : 
(4+5+7)/3 = 5.3. We could then 'move' the average a long, and find the 
a v e r a g e of t he second t h r e e numbers , 5 , 7 and 3 ; t h i s w i l l be 
(5+7+3)/3 = 5 . 0 . We can repeat the process by moving the average along the 
s e r i e s , one obse rva t ion a t a t ime . This then gives us the fo l lowing 
s i tua t ion . 

Original ser ies 4 5 7 3 6 4 5 3 7 6 3 4 

Moving average 
of order 3 5.3 5.0 5.3 4.3 5.0 4.0 5.0 5.3 5.3 4.3 

Since our first moving average is the mean of the first three terms 
(4, 5 and 7) we can place this underneath the middle value and then move 
the average along one value each time. We have calculated a moving average 
of three terms; we call this an average of order 3. An average of order 5 
would include 5 terms and so on. 

One of the reasons that we calculate a moving average is to reduce the 
variation in the original series; in our example the moving average is less 
variable than the original series. We also see that the series of averages 
is shorter than the original; we have "lost" terms at the beginning and the 
end. This is inevitable, because of the way we calculate the moving 
average. The greater the order, the more variation will be smoothed out, 
but the more terms that will be "lost" at the beginning and end of the 
series. 

Amoving average, therefore, will smooth out random variation in a 
time series, and if we choose an appropriate order it will also eliminate 
the seasonal variation. What will be left will be the trend values. We 
have defined the seasonal variation to be that which varies with the 
seasons, so which will repeat itself annually. If we have monthly data, 
therefore, we shall need a moving average of order 12 to eliminate the 
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seasonal variation; with quarterly data we will use an average of order 4. 
There is, however, one extra problem when we use an average with an order 
which is an even number. If we calculate an average of order 12 and start 
with observations from January 1979 to December 1979 (as is done in Table 
5.5), this will be centred half-way between June and July 1979. The 
average for February 1979 to January 1980 will be half-way between July and 
August 1979, and so on. This is obviously inconvenient; we want to know 
the trend value of June and July and not some mid-point. What we have to 
do, once we have calculated the first average, is take a second average of 
two terms which will 'centre' our trend values. We call the resulting 
moving average as one of order 2x12. 

The calculations of the 2x12 moving average for the Fiji tuna catch 
were shown in Table 5.5; the moving averages, or trend values, have been 
plotted on Figure 5.7. We can see that the moving average has removed most 
of the random and seasonal variation and so allows us to get a much better 
idea of the trend. 

FIGURE 5.7 : MONTHLY TUNA CATCH (FIJI) AND 12-MONTH MOVING 
AVERAGE (broken line) 

i i i i i i i 

1979 1980 1981 1982 
Month 

Of course moving averages do not eliminate the effects of different 
conditions from year to year: in fact they help to highlight these effects. 
It is very easy to see from the moving average line on the graph that 1980 
was a bad year, and 1981 a good year, for example. 

The example we have given relates to repeated fluctuations which occur 
during a year, and this is probably the most common seasonal variation we 
will encounter. However, we can also encounter seasonal patterns over 
different periods - for example: 

Monthly 

There may be a repeating pattern during each lunar month. Studies 
have shown that catches of baitfish are regularly highest at the time of 
new moon, and lowest at time of full moon. 
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Daily 

Some variables may change regularly at different times of the day. 
The price of fish in the local market, for instance, may be highest early 
in the morning, and may be lower later in the day as vendors reduce their 
prices in order to get rid of their unsold stock. 

The same techniques can be applied in these circumstances, in order to 
remove the repeating pattern, and to obtain a more realistic trend line for 
data. 
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TOPIC 6 - SAMPLING : HOW TO GET SOMETHING FOR A LITTLE 

6.1 Introduction 

'Sampling' is the process of choosing a portion of a population to 
represent the whole population. It contrasts with a 'census' when every 
member or unit of a defined population is included. Almost everyone is 
familiar with situations in which judgements are made about a whole group 
of items when information is available for only a few of them. If we want 
to find out about the quality of a sack of rice we would probably only pick 
out a couple of handfuls and look carefully at these; it would not be 
necessary to investigate the whole sackful. Similarly, when testing the 
grade of a shipment of copra, only a small part of the shipment is actually 
tested, it being assumed that the remainder will be similar. 

These simple situations are examples of a common statistical technique 
known as sampling. We are selecting a number of units from a population, 
observing some characteristics for these units and then using the results 
from the sample to estimate values for the whole population. Obviously 
this will be an important, practical technique, because if we can achieve 
reasonable results from a sample of observations, then this will be much 
cheaper and more efficient than having to observe every unit in the 
population. 

In many situations, including the examples we looked at above, the 
procedure of sampling is quite simple and straightforward. We know that 
rice selected from one part of the sack will be very similar to that taken 
from some other part. We will not obtain a very different result if we 
take two handfuls or twenty. Similarly, if a doctor wishes to take a 
sample of blood from a patient in order to test for the presence of some 
disease, he knows that wherever in the body he takes the sample, he will 
get the same results so he can take just one blood sample. 

The important thing about all the examples we have looked at so far is 
that the population of items under consideration were well mixed up; they 
did not vary very much. Technically, we can say that these populations are 
relatively homogeneous. which means that the variability between units is 
small. 

We must realise that, to obtain fisheries statistics, particularly 
information on artisanal and subsistence fishing which is of interest to 
many governments in the region, we will have to use sampling methods. It 
would be too expensive and too time-consuming to try to run a continuous 
collection of data about all the fishing effort and catch in a country. 
Unfortunately when we look at the kind of populations we have to deal with, 
we will expect to find that they are far from homogeneous, and sampling 
will not be nearly as easy as in our simple examples above. Some villages 
will no doubt catch far more fish than others, so we cannot use data from 
one or two villages to tell us about the total fish catch of the country. 
The catch will no doubt vary from day to day, and from one time of the year 
to another, so we cannot easily choose data for one day or one week to 
estimate catch accurately for a whole year; different types of boat, 
different fishing techniques, etc. will produce different results, and we 
will have to make allowance for this in designing a sample to derive our 
estimates. 

The populations we usually have to deal with, then, are fairly 
heterogeneous; there is considerable variability. In this case, sampling 
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is more difficult. Very often we have very little prior information about 
the population we want to study; all we know is that it is heterogeneous. 

In this topic we will look at different types of samples we can design 
to give us the estimates we need; a little of the mathematical theory of 
sampling; ways to measure the accuracy or reliability of the estimates we 
obtain from our sample; and how to assess the size of sample we will need 
in order to achieve an acceptable level of reliability in our results. 

6.2 Some concepts and definitions 

First, it will be useful to define some new concepts which we shall 
use. These follow on from our previous definitions in Topic 2. There we 
looked at the terms: statistical unit, observation, characteristic, and 
population. 

Finite and infinite populations 

We sometimes need to distinguish between 'finite' and 'infinite' 
populations. A finite population is one which has some limit to its size, 
e.g. the number of foreign longline vessels operating in a country's 
waters; the total catch by artisanal fisheries in a country, and so on. An 
infinite population is one which has no limit (or is so large that we 
cannot identify a limit); for example, all the fish in the sea. It is 
interesting to observe that for infinite populations there is no 
alternative to sampling in order to make estimates of population 
characteristics. It is impossible to measure the average fork length of 
the whole population of skipjack tuna; to do that we would have to catch 
every skipjack in the sea. All we can do is make estimates based on a 
sample of fish. 

Sampling unit 

Elementary units, or groups of units, which are convenient for 
purposes of sampling, are called sampling units. For example, in a 
subsistence fishing survey we may find it most convenient to make a 
selection of villages from which to collect data. The village is the 
sampling unit. 

We must be very careful here to distinguish between the terms 
'sampling unit' and 'statistical unit'. These may be the same, but this is 
not necessarily so. For instance, if we select a sample of villages, then 
'village' is the sampling unit. But if we then collect our data of catch 
and effort for each boat in the village, then 'boat' is the statistical 
unit. 

Thus, we define 'statistical unit' to refer to the element we wish to 
collect information about, and the 'sampling unit' to refer to the element 
or group of elements which we use as a basis for sample selection. 

As we shall see later, we often select samples in two or more stages. 
For example, we might select a number of villages at the first stage, and 
then within each selected village, we could choose a sample of households 
from which to collect data on fishing. In this case we refer to the 
village as the 'primary sampling unit' and the household as the 'secondary 
sampling unit'. 
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This multiple usage of the word 'unit' can be quite confusing. We 
also talk about a 'fishing unit' which we define as the smallest discrete, 
complete unit necessary for a fishing activity. In practice, we can expect 
the 'fishing unit' to equate to the 'statistical unit'. We will be trying 
to collect information about the 'fishing unit'. 

Sampling frame 

In order to select a sample from a finite population we need a list of 
all the sampling units. We call such a list the sampling frame. The frame 
must be complete and up-to-date; if any unit is not included then it has no 
chance of being selected in the sample and this may well lead to 
inaccuracies in the results. 

The preparation of the sampling frame can be one of the most difficult 
and time-consuming tasks in a sample survey. We also often find that the 
information that we have available to provide the frame will limit the kind 
of sample we can select and the results that we can obtain. Information 
from previous investigations is sometimes suitable, e.g. records from a 
population census can provide a valuable source of data for sampling 
frames. 

Sample size 

The 'sample size' is simply the number of sampling units we select to 
be in the sample. Obviously the sample size must be less than the number 
of units in the whole population. 

Sampling fraction 

The 'sampling fraction' refers to the proportion of the population 
which is included in the sample. It is usual to refer to a population of 
'N' units, and the sample as consisting of 'n' units. The sampling 
fraction is then: n/N. For infinite populations, the concept of a sampling 
fraction does not exist. 

Parameter 

We use the word 'parameter' (or population parameter) to mean the true 
value of the characteristic of the population which is being estimated. 
Thus, for instance, in a sample survey of local fisheries in a country, the 
population parameters we are interested in will probably be the total catch 
of fish in the country, the average catch per boat day for all boats 
operating in the country, the proportion of all households which are 
engaged in subsistence fishing, and so on. 

Sampling error 

We use results from a sample to make estimates of population 
parameters. The word 'estimate' indicates that we do not know the exact 
value of the parameter, but that we hope to be quite close. Obviously, if 
we do not measure or collect data from every sampling unit within the 
population we cannot expect to obtain the value of a population parameter 
exactly. We refer to the difference between the estimate and the true 
value as the sampling error. In a sense this is the price we have to pay 
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for only observing part of the population. With a large sampling error 
then, the estimate obtained from our sample will be inaccurate; if the 
sampling error is small, the estimates will be close to the true value. 

There is, however, a problem, because normally we do not know the 
value of the population parameter. There would be little point in 
undertaking a survey to collect results to estimate a value which we 
already know. It is, therefore, impossible to calculate the sampling error 
exactly. What we can do is to calculate how large we expect the sampling 
error to be, provided we select the sample according to certain, 
well-defined rules. To help understand the idea of sampling error more 
clearly it will be useful to look at Figure 6.1. 

FIGURE 6.1 : REPRESENTATION OF SAMPLING ERROR 

X XX XM XX XX X XXX X 
1 1 1 1 1 1 ~ r~ 

32 34 36 38 40 42 44 
Average dally catch of ffsh per boat (kg) 

Figure 6.1 represents the results of a sample survey to measure the 
average daily catch of fish per boat in a country. We use a scale to 
represent catch and we can plot the value we obtain from a sample as a 
small cross. The true population value, is represented by the large 
asterisk. In practice, of course, this value will not be known. Let us 
assume that the population we are considering consists of 500 boats and 
that we are taking a sample of 20. With a different sample we get another 
estimate and we can plot this as another cross. On the diagram wc have 
plotted the results from 15 different samples, but we could have plotted 
many more. In fact, there are 267x10^3 different possible samples (that 
is, 267 followed by 33 zeros), and each of these may well produce different 
estimates. We could plot all these estimates as a frequency distribution 
and we would find that the shape would be almost exactly the same as a 
Normal distribution which we looked at in Topics 3 and 4. This will always 
be the case, provided the sample size is large enough (say, 20 or more), 
more or less regardless of the actual distribution of the population. 

Now, as long as the sample results are clustered around the true 
value, or, putting it technically, that the mean of the Normal distribution 
is the population mean, then a measure of the accuracy of the sample 
estimates is provided by the degree of dispersion of the distribution. We 
measure dispersion by the standard deviation, but to distinguish between 
the standard deviation of the population and the dispersion of the sample 
estimates around the mean, we call the latter the standard error of the 
estimate. 

This is a very important concept in statistics. We will come back to 
it a little later in this topic, and will give the formulae for calculating 
the standard error for some principal types of samples. 
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Bias 

In the previous section we saw how the standard error of an estimate 
is a measure of its precision, provided that the distribution of all the 
different possible estimates is centred round the true population value. 
If this is not the case, we say that our sampling scheme is 'biased' and an 
example of this is given in Figure 6.2. 

FIGURE 6.2 : EXAMPLE OF A BIASED SAMPLE 

X XX X X XX XX X XXX X 

32 34 36 38 <K> 42 44 
Average dally catch of fish per boat (kg) 

We are using the same situation as before, but with this sampling 
scheme we can see that the different estimates are not clustered round the 
true population mean but around some higher level. If we looked at the 
distribution of all the possible sample estimates, it would still look like 
a Normal distribution, but this time the mean of the Normal distribution 
would not be the same as the population mean. The difference between the 
two is the bias. 

With a biased sample the accuracy of the estimate is not measured just 
by the standard error; it also includes the bias. Technically, we can 
measure the accuracy by the square root of the sum of the squares of the 
bias and the standard error. This will not matter very much as long as we 
know the value of the bias. In a very few situations we do use biased 
samples because they may be more accurate in the end, but the important 
thing is that we know what the bias will be. 

In practice, however, bias may well be introduced and we do not 
realise it, and so we do not know how large it will be. It can arise in 
several different ways: from problems in preparing the sample frame, from 
the way the sample is selected, from the way observations are made, from 
non-response, from mistakes in calculations and also, in some cases, from 
the way we make the population estimates. 

In our example of catch per boat, bias could arise because we have 
faulty scales which give a wrong reading; because people collecting the 
data decide to guess the weights, instead of measuring them accurately; 
because we fail to observe all the fish caught, e.g. by missing out on 
part of the catch at night; because we have failed to include in our frame 
some boats which have a different average catch from the boats we have 
included; or for a variety of other reasons. 

Bias also introduces another drawback into samples. In general, we 
hope that as we increase the size of the sample we improve the estimates by 
reducing the sampling error. In other words we get more accurate results 
at the cost of having to make more observations. If the sample is biased, 
however, it does not matter how large the sample is made; the bias will 
still be present. 
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Generally speaking, we may say that it is very important to try to 
reduce bias, or eliminate it altogether from our surveys. 

Non-sampling errors 

We use the general term non-sampling errors to refer to all the types 
of errors and mistakes that can occur when we undertake a survey, other 
than the basic inaccuracy that is a result of the sampling process itself. 
Non-sampling errors can arise because of mistakes by enumerators, wrong 
answers given by respondents, problems with the sampling frame, poor data 
processing techniques, and many other reasons. They will, of course, 
happen in complete censuses as well as sample surveys and, in fact, can be 
a serious problem in these cases because of the much larger nature of the 
operation. In a sample enquiry, however, it is especially important to try 
to control these errors, because each sampling unit 'represents' many 
others in the population; just as we multiply our sample results to 
estimate population totals, so we multiply the effect of each error. Most 
statistical textbooks tend to concentrate on techniques for reducing the 
sampling error and to overlook the operational difficulties of actually 
carrying out the survey. This is mainly because the effect of non-sampling 
errors is very difficult to estimate and varies considerably from survey to 
survey. There is no mathematical technique we can use, as we can to 
calculate the sampling errors of estimates. When detailed research has 
been undertaken, however, it has been found that non-sampling errors in 
some surveys can be at least three times larger than the sampling error. 
What we have to do, when carrying out any investigation, is to build in as 
many checks and controls as possible. 

6.3 Methods of selecting a sample 

6.3.1 Random and non-random samples 

F i r s t we should d i f f e r e n t i a t e between two types of sample s e l e c t i o n -
random and non-random. A random method of s e l e c t i o n i s one which g i v e s 
each of t h e u n i t s in t h e p o p u l a t i o n a s p e c i f i e d , or c a l c u l a b l e ( a n d 
non-zero) p r o b a b i l i t y of being s e l e c t e d . This i s sometimes r e f e r r e d to as 
p r o b a b i l i t y sampling. 

Other methods of sample s e l e c t i o n a re r e f e r r e d t o as non- random, or 
n o n - p r o b a b i l i t y . For example , suppose we wish t o c o l l e c t a sample t o 
es t ima te the t o t a l subs i s t ence and a r t i s a n a l f i s h catch in a c o u n t r y . I f , 
fo r r e a s o n s of c o s t and c o n v e n i e n c e , we were t o r e s t r i c t o u r s a m p l e 
s e l e c t i o n to boats ope ra t ing w i t h i n 20 km of our u rban c e n t r e , we would 
have a non-random sample. We cannot r e a l l y expect t h a t e s t i m a t e s o b t a i n e d 
from wi th in and near an urban cen t re a re t r u l y r e p r e s e n t a t i v e of t h e whole 
popu la t ion . 

A r a t h e r s imi l a r s i t u a t i o n a r i s e s wi th ' judgement ' sampling where t h e 
sample s e l ec t ed i s one which we b e l i e v e , or f e e l i n t u i t i v e l y , would be 
r e p r e s e n t a t i v e of the whole popu la t ion . We may fee l c o n f i d e n t t h a t ( s a y ) 
two p a r t i c u l a r i s l a n d s a re ' t y p i c a l ' of the whole c o u n t r y ; i n o t h e r words 
we make a sub jec t ive judgement t h a t we can e s t ima te p o p u l a t i o n p a r a m e t e r s 
by s e l e c t i n g a sample from those i s l a n d s o n l y . Th i s may be t r u e ; on t h e 
o ther hand i t may n o t . There i s no way of knowing, or c a l c u l a t i n g , how 
wel l such a sample does in fac t r ep re sen t the popu la t ion . 

Al l non-random samples suffer from one very se r ious drawback; t h e r e i s 
no mathematical way to c a l c u l a t e the sampling e r r o r . A sample based on the 
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laws of chance, on the other hand, can provide a measure of how precise 
these estimates are. Thus, we have an objective means of evaluating the 
results of a survey. This is a most important characteristic, and is the 
biggest single reason why statisticians prefer to use random, or 
probability, sampling methods whenever possible. For the rest of this 
chapter we will concentrate our discussions entirely on random sampling. 

There are several different types of random sample, which will be 
discussed a little later. In some types every unit in the population has 
an equal chance of being selected; in others some have more chance than 
others. What all random samples have in common, however, is that every 
unit has some chance of selection which is known or can be calculated. In 
a non-random sample this is not so. 

6.3.2 The use of random numbers 

In order to select units at random we need some kind of random process 
that produces results with no order or pattern, but where each unit has a 
known probability of selection. Some examples of such processes are: 

(a) tossing a coin; 
(b) throwing dice; 
(c) selecting numbers out of a hat. 

Any of these methods could be used to select a sample, but, in 
practice, they will be rather cumbersome to use, particularly if the sample 
size is at all large. Therefore, most people use random numbers from a 
computer, a calculator, or already prepared tables. An example of a table 
of random numbers is given in Table 6.1. This table consists of a number 
of digits and there is absolutely no pattern or order in the way these 
digits are written down. The table can be read horizontally or vertically. 
The gaps do not mean anything; they are simply there to make the table 
easier to read. 

TABLE 6.1 : EXAMPLE OF A TABLE OF RANDOM NUMBERS 

87 08 
88 33 
22 50 
48 70 
93 45 

50 76 
91 64 
33 20 
90 59 
05 10 

92 85 
08 50 
59 36 
05 85 
13 46 

56 27 
54 14 
83 01 
00 28 
52 29 

54 43 
80 68 
28 72 
23 48 
04 41 

83 
78 
09 
56 
40 

72 
01 
63 
65 
93 

63 
36 
77 
86 
99 

09 
52 
86 
17 
69 

09 
13 
57 
49 
27 

09 
20 
11 
57 
93 

02 
34 
71 
46 
57 

26 
45 
09 
43 
31 

33 
11 
58 
33 
59 

80 
48 
80 
96 
70 

40 
40 
00 
16 
12 

39 
67 
95 
78 
80 

69 
82 
83 
25 
30 

66 
22 
89 
81 
32 

68 
80 
54 
00 
10 

14 
40 
37 
24 
80 

19 
13 
94 
82 
32 

69 
11 
78 
50 
29 

79 
33 
77 
42 
59 

29 
84 
05 
17 
49 

39 
24 
36 
21 
88 

40 
11 
13 
16 
86 

81 
26 
81 
76 
71 

33 
39 
68 
24 
40 

86 
25 
80 
88 
13 

15 
73 
51 
74 
63 

69 
00 
77 
45 
65 

54 
54 
77 
70 
70 

29 
39 
87 
33 
30 

65 
33 
92 
90 
76 

99 
77 
55 
91 
26 

57 
32 
12 
97 
26 

70 
76 
93 
36 
91 

50 
58 
29 
55 
89 

60 
70 
82 
63 
99 

24 
70 
95 
53 
93 

23 
09 
94 
85 
90 

56 
88 
77 
32 
10 

54 
30 
71 
75 
12 

27 
89 
65 
67 
28 

21 
00 
83 
18 
85 

09 
39 
91 
57 
27 

17 
86 
48 
26 
99 

76 
73 
49 
42 
11 

87 
76 
25 
02 
64 

85 
31 
97 
05 
06 

33 
76 
04 
75 
45 

62 
67 
44 
68 
84 

94 
43 
50 
70 
07 

70 
61 
01 
64 
14 

00 
84 
13 
59 
19 

20 
21 
41 
79 
34 

43 
82 
88 
54 
55 

27 
59 
46 
73 
18 

77 
03 
74 
71 
90 

45 
59 
75 
61 
87 

70 
64 
83 
96 
94 

17 
21 
30 
92 
31 

01 
32 
53 
65 
53 

45 
41 
58 
12 
60 

54 
25 
46 
74 
84 

86 
29 
79 
79 
46 

86 
65 
37 
84 
95 

45 
26 
41 
16 
27 

31 
57 
89 
21 
69 

19 
06 
22 
97 
37 

45 
85 
72 
08 
33 

78 
00 
21 
90 
20 

78 
43 
53 
96 
13 

69 
89 
39 
02 
75 

36 
50 
77 
31 
59 

13 
65 
44 
16 
65 

99 
82 
74 
02 
90 

29 
76 
52 
47 
46 

12 
97 
25 
29 
10 

18 
30 
50 
82 
76 

94 
14 
08 
83 
35 

62 
89 
02 
38 
28 

66 
12 
20 
17 
54 

31 
07 
05 
86 
97 

03 
95 
11 
77 
16 

98 
51 
12 
43 
56 

34 
06 
93 
77 
49 

23 
99 
56 
42 
85 

21 
56 
57 
88 
16 

88 
96 
72 
68 
65 

39 
74 
44 
99 
84 

15 
09 
10 
40 
78 

15 
10 
53 
69 
40 

79 
12 
66 
54 
60 
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Let us look at an illustration of how we use this table, to select a 
random number between 1 and 63. We choose a random starting point on the 
table - say the 11th row of the 17th column of paired digits. We will 
observe that this starting point is the number 99. It is too large for our 
requirements (i.e. it is greater than 63) so we must reject it and take 
the next number. If we are working vertically the next number is 82 and 
the next 74; both are too large so they too must be rejected. The next 
number, 02, since it falls within our specified range, becomes our random 
selection. If we need another selection we must continue from immediately 
after our last selection. Thus, we would have to reject 90 as being too 
large, and our next selection would be 29. 

If we had been working horizontally from our starting point, we would 
have rejected the first number 99 as before, and would have selected the 
next number, 62, which falls within our specified range. Our second 
selection would be the next random number, 34. 

We may see from this that we really need rules about using random 
number tables. For our purposes we will work vertically until reaching the 
foot of a column, then continuing at the top of the next column, and so on. 
If random numbers are being extensively used, we would need more precise 
rules than that. 

6.4 Types of random sample 

There a re many d i f f e r e n t t y p e s of random sample , and we w i l l 
concentrate on a few of the best known and most commonly used. 

6.4.1 Simple random sample 

The most basic type of random sample is known as a 'simple random 
sample', which can also be written as srs, for short. From a population of 
N units a sample of n is selected. This is done in such a way that any one 
of all the possible samples that could be used, is equally likely to be 
chosen. In effect this also means that every one of the N units has the 
same chance of being in the sample. 

Simple random sampling can be realised by selecting units one by one 
with equal probability (i) replacing units already selected before the next 
draw, so that in fact the same unit may be selected more than once, or (ii) 
without replacing the selected units before the next draw. The former is 
termed 'srs with replacement' and the latter 'srs without replacement'. 
The latter can be shown to provide a more efficient estimate than the 
former. 

It may be noted that srs is not widely used in practice, mainly 
because some information or other is usually available for all the units in 
the population and this information can generally be utilised in the 
selection schemes which are discussed below, to increase the efficiency of 
the sample design. 

6.4.2 Systematic sample 

A systematic sample is one in which the sample is selected from a list 
of the population according to some pre-determined systematic pattern. 
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Perhaps the most commonly used method is to make selection at regular 
intervals from the list. For example, to draw a 10 per cent sample we 
would select every 10th unit, and would do this by drawing a random number 
between 1 and 10 to choose the first unit. If this were, say, 5, then the 
units selected in the sample would be the 5th, 15th, 25th, 35th, and so on. 
With this method there is no chance for various combinations of units to be 
selected, e.g. it is impossible to select both the first and the second 
units on the list, as could occur with simple random sampling. 

This fact can be turned to our advantage, and systematic sampling can 
provide a more efficient and more representative sample than could be 
obtained by simple random sampling. This is achieved by first arranging 
the units in the list in a suitable order. For instance, if we wished to 
draw a sample of villages, we might list the villages geographically. This 
systematic procedure guarantees a very good geographic 'spread' of 
selections. It avoids the possibility, which is always present in a simple 
random sample, that by chance we might select, for example, a higher 
proportion of villages near an urban centre than is actually present in the 
population. So, provided the list is ordered in a satisfactory way, we can 
be more confident of drawing a representative sample. However, the list 
must not be prepared so that it contains a regularly repeating pattern, as 
this can lead to a most unrepresentative selection. 

Another form of systematic sample, which has been shown to be very 
efficient, is called a 'Balanced Systematic Sample'. With this method, the 
population is listed in a suitable order, and selections are made at equal 
distances from each end of the list. For example, in a list of 100 units, 
if the first unit is selected by random means, then this would be balanced 
by also selecting the 100th unit; if the 12th unit were selected, then the 
89th unit (i.e. the 12th from the other end of the list) would also be 
selected, and so on. 

In general we can say that systematic sampling is a good method in 
many circumstances, since it is unbiased, is easy to understand and to 
operate, and gives us an efficient sample. 

6.4.3 Stratified random sample 

In simple random sampling the selection of the sample is left to the 
luck of the draw. No use is made of any knowledge that we possess about 
members of the population. If we have such knowledge, we should be able to 
improve upon simple random sampling by using the knowledge to guide us in 
the selection of the sample. 

For example, suppose we wish to estimate the average daily landing per 
vessel from a fishing fleet at a particular port, by taking a random sample 
of the fishing boats. If all of the fishing boats are similar, then we can 
proceed as described before. But if the fleet consists of, say, 100 small 
canoes and four large motorised boats, obviously our answer will depend 
greatly upon whether our sample happens to include one or more of these 
large boats. 

In circumstances like this we can often improve the accuracy of our 
estimates by dividing the population up into groups, or strata, and we can 
then take a sample from each stratum separately. 

In the example we gave above, we would stratify by type of boat - with 
powered fishing boats in one stratum, and canoes in another. This is the 
principle behind stratification: we try to have each unit in a stratum as 



85 

s i m i l a r to each o ther un i t as p o s s i b l e ( i n terms of t h e c h a r a c t e r i s t i c we 
are measur ing) . Thus, no m a t t e r what u n i t we happen t o s e l e c t w i l l be 
r e p r e s e n t a t i v e of o ther u n i t s in t h e s t r a t u m . However, we can make t h e 
d i f fe rence between s t r a t a as g r e a t as we l i k e , and i n d e e d i t i s t o our 
advantage to do so . We r e f e r to t h i s as ' low w i t h i n - s t r a t u m v a r i a b i l i t y ' 
and ' h i g h between-stratum v a r i a b i l i t y ' . The problem in p r a c t i c e i s t h a t we 
need a s u i t a b l e sampling frame i n o r d e r t o make t h e s t r a t i f i c a t i o n , and 
t h i s may be a l i m i t i n g f a c t o r . 

The most common, and the most o b v i o u s , method of s t r a t i f i c a t i o n i s 
geograph ic . For a f i s h e r i e s s u r v e y we would a lmos t c e r t a i n l y wish t o 
s t r a t i f y be tween h i g h i s l a n d s and a t o l l s , and be tween r u r a l and u rban 
a r e a s , for i n s t a n c e . 

As w e l l as improv ing t h e p r e c i s i o n of o u r o v e r a l l p o p u l a t i o n 
e s t i m a t e s , s t r a t i f i c a t i o n i s i m p o r t a n t f o r o t h e r r e a s o n s . We may w e l l 
need, for example, e s t ima tes for d i f f e r e n t d i s t r i c t s or p r o v i n c e s as w e l l 
a s f o r t h e w h o l e c o u n t r y . By m a k i n g e a c h d i s t r i c t a s t r a t u m we 
au tomat i ca l ly get r e s u l t s f o r t h e d i s t r i c t . Using s t r a t i f i c a t i o n a l s o 
allows us to change the s i ze of the sample in each s t r a t a . If one a r e a i s 
v e r y e x p e n s i v e t o su rvey t h e n t h e sample s i z e can be r e d u c e d , and i f 
a n o t h e r a r e a seems t o be v e r y v a r i a b l e t h e n i t can be s a m p l e d more 
i n t e n s i v e l y . 

Once the s t r a t a have been d e f i n e d , a s e p a r a t e sample i s t a k e n from 
each one, us ing simple random or sys temat ic sampling. 

6 .4 .4 Mul t i - s t age sampling 

The two main types of random sample t h a t we have looked a t so f a r , 
simple random samples and s t r a t i f i e d s a m p l e s , w h i l e b e i n g v e r y u s e f u l 
t e chn iques , do have two drawbacks when used i n many P a c i f i c c o u n t r i e s . 
F i r s t l y , the cost of c o l l e c t i n g the data f o r each s e l e c t e d sampl ing u n i t 
can be very h igh , which means t h a t , because the o v e r a l l budge t i s u s u a l l y 
l i m i t e d , the sample s i ze has to be reduced. The main reason for t h i s h i g h 
' u n i t c o s t ' i s the amount of time t h a t i s r equ i r ed to reach s c a t t e r e d u n i t s 
which can of ten be q u i t e i s o l a t e d . Obviously t h i s w i l l be much more of a 
problem w i t h s u r v e y s i n r u r a l a r e a s . C h o o s i n g a s i m p l e r a n d o m , o r 
s t r a t i f i e d sample, could wel l mean t h a t i t would be n e c e s s a r y t o v i s i t a 
l a rge number of v i l l a g e s . In some coun t r i e s t h i s can mean a journey of two 
or t h r e e days simply to ob t a in one o b s e r v a t i o n . Since a l a rge p a r t of t h e 
cost of any r u r a l survey i s accounted for by s a l a r i e s and t r a n s p o r t a t i o n 
and s ince time taken t o l o c a t e a un i t i s not p r o d u c t i v e , i t i s c l e a r t h a t 
we need some way of o rgan is ing the sample in order to reduce the amount of 
t r a v e l l i n g r e q u i r e d . 

The second major disadvantage i s t h a t both types of sample r e q u i r e a 
complete sampling frame c o v e r i n g t h e whole p o p u l a t i o n . To c a r r y ou t a 
f i sh ing survey in a country in which the sampl ing u n i t i s t o be t h e boa t 
(or the f i s h i n g u n i t ) , we would need to p r e p a r e a l i s t of eve ry boa t (o r 
every f i sh ing u n i t ) in the country for our frame, and t h i s i s l i k e l y t o be 
q u i t e i m p r a c t i c a l . In many d a t a c o l l e c t i o n e x e r c i s e s one of t h e most 
d i f f i c u l t problems can be the p r e p a r a t i o n of a sampling frame. 

Mul t i - s t age sampling has been deve loped t o h e l p overcome t h e s e two 
se r ious drawbacks, a l though, as we sha l l see l a t e r , t h i s can on ly be done 
a t the expense of a c e r t a i n amount of accuracy in our e s t i m a t e s . The bas ic 
idea i s t h a t , i n s t ead of s e l e c t i n g a sample of our f i n a l sampling u n i t s , we 
combine these u n i t s i n t o groups and then s e l e c t a sample of t h e s e g r o u p s . 
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For example, in our f i s h i n g survey we could f i r s t of a l l l i s t v i l l a g e s and 
s e l e c t a sample of t h e s e . Since we only s e l e c t a sample of v i l l a g e s , we 
have immediately cut down on the amount of t r a v e l l i n g r e q u i r e d t o go from 
place t o p l a c e . In a d d i t i o n , t o s e l e c t t h i s sample a l l we need i s a l i s t 
of v i l l a g e s and not a complete frame of a l l f i s h i n g b o a t s . We would t h e n 
need t o make a l i s t of b o a t s i n our s e l e c t e d v i l l a g e s , b u t t h i s i s 
obviously a fa r simpler t a sk than making a l i s t of a l l t h e b o a t s i n t h e 
count ry . 

We can then u n d e r t a k e a second s t a g e of s a m p l i n g , s e l e c t i n g b o a t s 
w i th in the v i l l a g e s a l ready picked o u t . We have i l l u s t r a t e d here two-stage 
sampling; t h e f i r s t s t a g e was s e l e c t i n g v i l l a g e s and t h e second s t a g e 
choosing b o a t s . In p r i n c i p l e , we can have any number of s t a g e s ; and t h e n 
we r e f e r to m u l t i - s t a g e sampling. For example, we could s e l e c t i s l a n d s a t 
the f i r s t s t a g e , v i l l a g e s w i th in each s e l e c t e d i s l and a t the second s t a g e , 
boats w i th in those v i l l a g e s a t t h e t h i r d s t a g e , and c e r t a i n days of t h e 
month on which to c o l l e c t da ta a t the four th s t a g e . 

In p r a c t i c e i t i s probable t h a t some combination of m u l t i - s t a g e (or a t 
l e a s t t w o - s t a g e ) and s t r a t i f i e d s ampl ing w i l l p r o v e t o be t h e m o s t 
e f f i c i e n t and c o s t - e f f e c t i v e system we can d e v i s e . 

6 .4 .5 Sampling with p r o b a b i l i t y p r o p o r t i o n a l to s i ze 

We w i l l not a t t empt t o examine more s o p h i s t i c a t e d d e s i g n s i n t h i s 
course , but w i l l mention one p a r t i c u l a r t e c h n i q u e , namely , s ampl ing w i t h 
p r o b a b i l i t y p ropo r t i ona l t o s i z e (o f ten r e f e r r e d t o as ' p . p . s . ' s a m p l i n g ) , 
because t h i s technique i s very widely used, e s p e c i a l l y in the f i r s t s t a g e s 
of m u l t i - s t a g e sampling. With p . p . s . s a m p l i n g , i n s t e a d of g i v i n g each 
un i t an equal chance of s e l e c t i o n , we adopt p r o c e d u r e s which g i v e l a r g e r 
u n i t s a g r e a t e r chance of s e l e c t i o n than smal ler u n i t s . 

We w i l l use an i l l u s t r a t i o n t o show how t o make s e l e c t i o n w i t h 
p r o b a b i l i t y p ropo r t i ona l to s i z e . Suppose in a m u l t i - s t a g e sample we 'srish 
t o s e l e c t one of f i v e v i l l a g e s i n a d i s t r i c t , w i t h t h e i n t e n t i o n of 
s e l e c t i n g c e r t a i n f i s h i n g u n i t s w i t h i n t h e s e l e c t e d v i l l a g e a t t h e n e x t 
s t a g e . Using t h e s e l e c t i o n methods we have d e s c r i b e d so f a r we would 
simply take a random number between 1 and 5 to choose the v i l l a g e . 

With p . p . s . sampling, we would need t o know t h e p o p u l a t i o n ( o r t h e 
number of households , or some o the r measure which i s s u i t a b l e for use a s a 
measure of s i z e ) of each v i l l a g e . Even i f we do not have a p r e c i s e measure 
of s i z e , t h e r e a r e of ten r e c o r d s a v a i l a b l e which w i l l be a d e q u a t e . For 
example , d a t a from t h e l a s t c e n s u s w o u l d g i v e us t h e c o m p a r a t i v e 
popula t ions a t t h a t t ime, and would be good enough to be used as e s t i m a t e s 
of the cur ren t popu la t ion . When we use es t imated measures of s i z e we may 
r e f e r t o p . p . e . s . ( i . e . p r o b a b i l i t y p r o p o r t i o n t o e s t i m a t e d s i z e ) 
sampling. We would make the v i l l a g e s e l e c t i o n in the fol lowing manner: 

V i l l age Popula t ion Cumulative popu la t ion S e l e c t i o n range 

A 226 226 1- 226 
B 705 931 227- 931 
C 339 1,270 932-1,270 
D 104 1,374 1,271-1,374 
E 295 1,669 1,375-1,669 
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The t o t a l popula t ion of f ive v i l l a g e s i s 1,669, so we would choose a 
random number between 1 and 1 ,669 . Any number be tween 1 and 226 would 
s e l e c t v i l l a g e A, and so on, according t o the f i gu re s shown i n t h e column 
' S e l e c t i o n r a n g e ' above. With t h i s system we are far more l i k e l y to choose 
the l a r g e s t v i l l a g e , B, than the smal les t v i l l a g e , D, because t h e r e are 705 
d i f f e r e n t random numbers (from 227 to 931) which would s e l e c t B, and on ly 
104 numbers (from 1,271 t o 1,374) which would s e l e c t D. In f a c t t h e 
chances of s e l e c t i o n a r e e x a c t l y p r o p o r t i o n a l t o t h e p o p u l a t i o n of t h e 
v i l l a g e s , as shown. 

We should note here t h a t the measure of ' s i z e ' which we r e a l l y wanted 
ib presumably the catch of f i s h , s ince t h a t i s t h e c h a r a c t e r i s t i c we a r e 
t r y i n g t o measure. We would r e a l l y l i k e to give p r o b a b i l i t y of s e l e c t i o n 
of v i l l a g e s in p ropor t ion to the amount of f i s h t h e y c a t c h , but t h a t i s 
presumably not known. However, in the case of subs i s t ence f i s h i n g , i t may 
be reasonable to expect t h a t f i s h ca tch would be r o u g h l y p r o p o r t i o n a l t o 
popula t ion ( a t l e a s t w i t h i n a c e r t a i n g e o g r a p h i c a r e a ) , so we can use 
popula t ion f i g u r e s as a usefu l s u b s t i t u t e f o r f i s h c a t c h a s t h e b a s i s on 
which to make p . p . s . s e l e c t i o n s . 

The use of p . p . s . s a m p l i n g , a t t h e f i r s t o r s e c o n d s t a g e s of 
m u l t i - s t a g e s a m p l i n g , i s v e r y common. When s e v e r a l u n i t s a r e b e i n g 
s e l e c t e d a t once ( e . g . i f we a re s e l e c t i n g 4 v i l l a g e s ou t of 50) , i t i s 
the usual p r a c t i c e t o make s e l e c t i o n s w i t h r e p l a c e m e n t , t h u s g i v i n g a 
v i l l a g e t h e chance of b e i n g d o u b l y - s e l e c t e d . T h i s i s s l i g h t l y l e s s 
e f f i c i e n t t h a n s e l e c t i o n w i t h o u t r e p l a c e m e n t - t h a t i s t o s a y , i t has 
s l i g h t l y higher sampling e r r o r s , but i t makes t h e e s t i m a t i o n p r o c e s s and 
the c a l c u l a t i o n of s tandard e r r o r e a s i e r . 

Although in p . p . s . sampling t h e p r o b a b i l i t y of s e l e c t i n g sampl ing 
u n i t s a t t h i s s tage i s unequal , we can s t i l l make subsequent s e l e c t i o n s in 
such a way t h a t the p r o b a b i l i t y of s e l e c t i o n for any f i n a l - s t a g e sampl ing 
u n i t i s exac t ly equa l , i f we wish . 

6.5 Principles of calculating standard error 

We will introduce this discussion by referring to the calculation for 
simple random samples, where the population is infinite (e.g. the total 
number of fish in the sea). 

Farlier in this topic, in introducing the concept of sampling error, 
we noted that if we took a number of separate samples, and calculated x in 
each case, we would finish up with a distribution of values of x, each of 
which is a separate estimate of fM. If we were to repeat this process a 
very large number of times (which, fortunately we will not have to do in 
practice) we would obtain the theoretical distribution of x, and we could 
calculate the standard deviation of this distribution. 

We will give the result of this as a theorem, i.e. "If random samples 
of size n are taken from an infinite population, the theoretical 
distribution of x has a standard deviation of (JI ,/n". 

a 
We write this as O^ = ^ and we refer to the measure ffj as the 

standard error of the mean. To avoid confusion in use of the symbol (T, it 
is more usual to write Se(x) to denote the standard error of the mean. The 
standard error of the mean plays a very important role in statistics, 
because it measures the variation of the theoretical sampling distribution 
of x. In other words, it tells us how much sample means can be expected to 
vary from sample to sample. We can see that, since the divisor is v/h", the 
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standard error of the mean will decrease as we increase the sample size. 
So the larger we make n, the more reliable will our x be as an estimator of 

JLL. 

Of course all this is theoretical, and in practice we do not have a 
large number of samples, each giving a calculation of x; normally we have 
one sample only. More importantly, we cannot ever know the value of O (the 
standard deviation of the population) of an infinite population. 
Therefore, we need to modify our formula by replacing (J by an estimate of 
(J. Fortunately we can do this, because we can calculate s, the standard 
deviation of the sample. Provided the sample is random and unbiased and 
the sample size is significantly large, we can expect s to approximate 
quite closely to (7. However, this may not hold for small samples, for 
large samples then, we estimate the standard error of the mean to be equal 
to s/ yff. 

For example, s can be calculated for our yellowfin data as 1.37 kg. 
Now we can say that from our sample we estimate the mean weight of the 
total population of fish to be 4.43 kg and that we estimate the standard 
error of this to be 1»37 = 0.17 kg. 

/63 

6.5.1 The finite population correction factor 

So f a r we have been d i s c u s s i n g samples drawn from i n f i n i t e 
p o p u l a t i o n s . When we are sampling wi thout r e p l a c e m e n t from f i n i t e 
populations we have to make an adjustment to our formula, and t h i s becomes 
the following: 

Se(x) = £ /N - n 
v/n V N - 1 

/jj_n In other words we have multiplied our previous formula by the f ac to r 
J H_j . This i s known as the ' f i n i t e popula t ion c o r r e c t i o n f a c t o r ' (or 
f . p . c . for shor t ) . The f . p . c . serves to reduce the standard error of our 
estimate from the value i t would have had i f we had been dea l ing with an 
in f in i t e popu la t i on , or if we had used sampling with replacement . To 
demonstrate the e f fec t which t h i s f ac to r has on our e s t i m a t e of t h e 
standard error of the mean, l e t us consider what the value of t h i s f ac to r 
would be if we had (a) a sample of 200 o b s e r v a t i o n s out of a t o t a l 
popula t ion of 40,000 and (b) a sample of 200 o b s e r v a t i o n s out of a 
population of 400 u n i t s . 

In the first case f.p.c. would be equal to: 

/40.000 - 200 /39.800 
/ = / = 0.998 

\J 40,000 - 1 V 39,999 

This is so close to unity that multiplying by i t w i l l have v i r t u a l l y 
no e f fec t on the answer we o b t a i n . In p r a c t i c e , where t h e sampl ing 
fraction is small (say less than 5%), we can ignore the f . p . c . a l together , 
and we can say that for very large f i n i t e populations, or with very small 
sampling f r a c t i o n s , we w i l l t r e a t Se(x) as being the same as for our 
in f in i t e population. 
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However, in the second case, this factor equals: 

/400 - 200 /200 
/ = / = 0.701 
V 400 - 1 V 399 

Thus, multiplication of our unadjusted calculation by this factor will 
reduce our estimate of the standard error of the mean by almost 30 per 
cent, and this is so significant that it certainly cannot be ignored. 

In practice it is usual to modify this correction factor slightly. We 
can note that 

/» - n = /N - 1 + 1 - n = /l - n - l" 
V N - 1 \] N - l \j N - 1 

and this is almost equal to 

pi 
V N 

or in other words the square root of one minus the sampling fraction. If 
we also replace £7 by s in our formula (as we did before), because we 
normally will not know the value of (T, our formula for the estimate of the 
standard error of the mean can be written as: 

Se(x) = $. /l - n 
7n v/ N 

We will find that this is the most usual presentation of the formula for 
practical purposes. 

6.5.2 Confidence intervals 

We must next ask ourselves what this really means. It is all very 
well to say that we estimate the mean weight of all fish in the area as 
4.43 kg with a standard error of 0.17 kg, but such a statement on its own 
will have limited value. Users of the statistics will probably understand 
perfectly well what the mean of 4.43 kg denotes, but how are they to 
interpret the value of the standard error? 

Fortunately, as we noted earlier, the distribution of calculations of 
x will approximate very closely to a Normal curve, and this will hold true 
even if the population itself was not distributed normally. It follows 
that the properties of the standard deviation in respect to the normal 
distribution, which we mentioned in Topic 4, will apply. Therefore we can 
say that about 68 per cent of all sample estimates will lie within one 
standard error either side of the mean, and over 95 per cent will lie 
within two standard errors. 

Of course we usually have only one single sample estimate, not a large 
number of them, so we need to put our statement into a different form to 
make it more useful. In practice we say that, provided x is an unbiased 
estimator of the population mean, there is a probability of about 68 per 
cent (or that we are "68% confident") that the sample mean plus or minus 
one standard error will include the population mean, and over 95 per cent 
probability that the sample mean plus or minus two standard errors will do 
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so. If we assume that our 63 yellowfin comprised a sample representing the 
total yellowfin population of the area, then there is a 68 per cent 
probability that the mean weight of all yellowfin in the area is within the 
range (4.43-0.17) kg and (4.43+0.17) kg, i.e. between 4.26 and 4.60 kg, 
and that there is over 95 per cent probability that it is within the range 
4.09 to 4.77 kg. These ranges are referred to as confidence intervals, and 
the different probabilities (i.e. 68%, 95%, etc.) are called confidence 
levels. 

Statisticians make most use of the 95 per cent confidence levels in 
practice, because this is a high enough figure for us to be "fairly sure" 
of being correct. Thus for the fish data, we interpret our results to mean 
that we are 95 per cent confident that the true mean weight of the fish 
lies somewhere in the range 4.09 to 4.77 kg. However, we can never be 
really sure, and we must never assert that the true mean is. within this 
confidence interval. 

If it were decided that for some purposes a 95 per cent confidence 
level is inadequate, we can make a similar calculation for other levels. 
For example, the 99 per cent confidence level pertains to an interval of 
2.6 times the standard error on either side of the sample mean. So we 
could say we are confident at the 99 per cent level that the true mean 
weight of the fish is between (4.43 - 2.6x0.17) and (4.43 + 2.6x0.17) kg, 
i.e. between 3.99 and 4.87 kg. A similar calculation can be made for any 
desired level of confidence, and we can look up special tables to find out 
the appropriate confidence interval for any level. 

6.6 Principles for estimating population parameters from sample data 

Next we must look at the techniques for making the estimates 
themselves - that is to say, the way in which we 'expand' the data obtained 
from the sample to obtain estimates for the whole population. This is in 
fact a very difficult subject and for surveys with a complex design, 
involving stratification, multi-stage selection, and probability 
proportional to size, the computation can become so complicated that 
processing will almost certainly have to be undertaken on a computer. 
However, the principles in making unbiased estimations still apply, even 
though the applications may be difficult. 

The estimators commonly used for estimating population parameters are 
of the form 

X = E »i xi 
i=1 

where X (pronounced X hat) represents the estimate of the characteristic 
for the population X; x^ is the value of this characteristic for the ith 
selected 'final-stage' sampling unit; and w^ is the 'weight' applicable 
to that unit. It is this 'weight' - which is variously referred to as the 
multiplier. the expansion factor or the raising factor - which provides the 
main difficulty in the estimation phase. 

Incidentally, it will be noted that we referred to x^ as the value 
for the 'final-stage' sampling unit; it is necessary to have this 
qualification because in multi-stage sampling we can have different 
sampling units at different stages, e.g. the village at the first stage 
and the fishing unit at the second stage, so we have to be careful to 
define just what we mean by 'sampling unit'. 
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For the simplest type of samples, where a l l uni ts have an equal chance 
of se lect ion, the expansion from sample data to popula t ion e s t ima te s i s 
quite straightforward. In these c i rcumstances , e . g . in simple random 
sampling or simple systematic sampling, the mul t ip l ier is the same for a l l 
selected uni ts and i s equal to N/n, which i s the inverse of the sampling 
fraction - sometimes referred to as the sampling i n t e r v a l . All t ha t i s 
needed i s to ' r a i s e ' sample values by t h i s f a c t o r , to ob ta in popula t ion 
est imates, i . e . X = £ E x . 

n 

6.7 Population estimates and sampling error for the main 
types of sample 

We are now in a position to look at the formulae whereby we estimate 
population parameters and calculate sampling errors, for the main types of 
sample we have been discussing. 

6.7.1 Simple random sample 

The notation we will use is: 

N = Number of sampling units in population 
n = Number of sampling units in the sample 
X = Population value 
& = Estimate of population value 
X = Estimate of population mean 

(We could also write this, as jl, since fJ. was our symbol for the popula­
tion mean, but in practice it is more common to write the estimate as X, 
pronounced X bar hat.) 

Se(X) = Standard error of population estimate 
= Standard error of estimate of population mean 

We then have, for estimates of the population mean: 

X = x , or *̂x In other words we simply estimate the popula-
n tion mean to be equal to the sample mean. 

Se(X) - 1 /l - H. 
/n V N 

and for estimates of the total population : 

X = NX , or H S x That is, we estimate the value of the popula-
n tion total to be the value of the sample total, 

multiplied by the sampling interval. 

Se(x) = N . S_ h - £ 
v/lT V N 
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For large and infinite populations, the f.p.c. can be omitted. So we 
have 

Se(X) = A and Se(X) = N . 3. 
\/n \fn 

6.7.2 Stratified random sample 

k = Number of strata 

k 
Nc = Number of sampling units in stratum c, so we have N = 2 Nc 

wc = Nc/N, i.e. the weight, or proportion, of 
total sampling units in stratum c 

nc = Sample size in stratum c 

Xc = Estimate of the population mean in stratum c 

xc = Sample mean in stratum c 

Then X = I 2 Nc xc 
N Ci1 

or, perhaps more commonly this would be written 

c> k 

x = 2 wc xc 

That is to say, we have a weighted mean, with the means of each 
individual stratum weighted by the proportion of the total number of 
sampling units in that stratum. 

The formula for the standard error is given by : 

Se(X) = 1 / V Nc (N c - n c ) „ 2 S c
2 o r J_ £ (N c

2 sc
2
 ( 1 _ ncj\ 

N J c=1 V n r Nr / 

This may be written, in terms of the weights, wc, as 

8.d) .yipm^T^) 
In this formula the f.p.c. (1 - nc/Nc) can be omitted if the 

sampling fraction is small (e.g. less than 5%) for every stratum. In 
practice in stratified samples we quite often need to have fairly large 
sampling fractions for some strata, and the f.p.c. is an important 
component in the calculation of the standard error. For example, if there 
are a few large boats and many canoes in a local fishery, we would 
endeavour to stratify by type of boat, and would probably include a fairly 
high percentage of the 'large boat' stratum in the survey. 



93 

Let us look at an example where we want to estimate the average fish 
catch on a certain day from a population of 350 boats, and that we have 
resources to collect data from 50 boats. We may take a stratified sample 
by type of boat, and get the following results. 

Survey Results 

Type of boat 

Canoes 
Small power boats 
Large power boats 

Total 
No. of 
Boats 
(Nc) 

278 
56 
16 

Sample 
No. of 
Boats 
(nc) 

28 
14 
8 

Est. Av. 
Catch 

(V 
18 
32 
112 

Est. 
Standard 
Deviation 
(sc) 

7 
10 
36 

Total 350 50 

To estimate average catch we simply substitute in this formula, and we 
have 

X = J_ f; Nc xc 
350 c=i 

= _ L (278 x 18 + 56 x 32 + 16 x 112) 
350 

= 24.5 kg 

This is a simple weighted mean. The figure of 8588 kg of course represents 
the total catch of all boats that day. 

In similar fashion we can substitute in our formula to calculate the 
standard error of our estimate, as follows: 

Se(X) = _1_ 
350 J c U"c (Kc -nc) ».•) 

We must note that the sampling fraction is above five per cent in each 
stratum, so we certainly cannot ignore the f.p.c. We have 

Se(X) = 1 / 278(250) . f + 56(42) . i0
2 + 16(8) . 362 

350 >J 28 14 8 

= 1.14 

So our estimate from the stratified sample is a catch of 24.5 kg per 
boat, with a standard error of 1.14 kg. In other words we are 95 per cent 
confident that the true average catch was 24.5 ± 2.3 kg, i.e. in the range 
22.2 to 26.8 kg. 

In is worth noting here that the predominant part of the total 
standard error arose from the first stratum, viz canoes. This may give us 
a clue that, if we were undertaking another such survey, we might reduce 
sampling error by increasing the sample size of this stratum. This idea 
will be explored in more detail in section 6.9. 
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6.7.3 Multi-stage sampling 

Estimation of population parameters for multi-stage samples becomes 
more complicated because we have to use different weights, or expansion 
factors, at each stage of the sampling process. We have to build up our 
estimates at one stage before we can go on to estimating at the next stage. 

The situation will be different depending on whether selection at the 
first stage is made with probability proportional to size or not, and 
whether first stage selections were made with or without replacement. We 
will give formulae here only for the simplest situation, but in practice it 
is more likely that p.p.s. would be used. 

Suppose we wish to estimate the total landings of fish along a section 
of coastline by sampling the landings from the fishing fleet. But we know 
that there are a number of landing places and many vessels fishing along 
the coast, and we cannot visit all places. In this case we could resort to 
Two-Stage Sampling. First, we select at random a convenient number of 
landing sites from the total sites available along the coast, e.g. suppose 
there are 8 sites and we select 3 of these. Then: 

N = Number of 1st stage units = 8 
n = Number of 1st stage samples = 3 

Next we select at each of these 3 sites a convenient number of boat! 
from the total number of boats landing at these ports. Then: 

M£ = Number of 2nd stage units available in 1st stage unit 'i' 
m£ = Number of 2nd stage units sampled from those available in 

1st stage unit 'i' 

We will assume our data is as follows : 

Landing site (n£) 
Number of boats present (M^) 
Number of boats sampled (m^) 

Landings (tonnes) 

1 
6 
3 

13 
9 
6 

Total landings by sample vessels 28 

5.3 

2 
9 
3 

5 
7 
10 

22 

4.7 

3 
7 
3 

12 
8 
13 

33 

2.6 

The notation we will use is: 

n i , . _ . 

-TT = 1st stage sampling fraction 

—i- = 2nd stage sampling fraction for the ith landing port 
Mi 
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Then, i f ( y £ j ) i s t h e l a n d i n g of a p a r t i c u l a r v e s s e l , i . e . t h e j t h 
v e s s e l a t the i t h p o r t , we have 

- 1 %\ 
yi = Average landing per vessel at sitei = — 2J vij 

Vi = Total estimated landing at sitei = Mi • _ V y-n 
mi j=i 

y = Total estimated landings for a 

Y = Total estimated landing for entire coast = 

11 s e l e c t e d s i t e s = £} \ m£ iii 

i=1 \ m£ j-1 / 

Est imat ion of the s tandard e r r o r of t h i s t o t a l e s t i m a t e i s a l i t t l e 
more c o m p l i c a t e d , b e c a u s e we h a v e two s o u r c e s of v a r i a t i o n i n o u r 
c a l c u l a t i o n . F i r s t l y , we have the v a r i a t i o n in landings by the v e s s e l s a t 
any landing s i t e , and then we have the v a r i a t i o n i n l a n d i n g s be tween t h e 
landing s i t e s . Our t o t a l sampling e r r o r i s t h e r e f o r e the sum of t h e s e two 
f a c t o r s . 

I t i s f o r t h i s r e a s o n t h a t we s a i d e a r l i e r t h a t t h e m u l t i - s t a g e 
sampling i s only achieved a t the expense of some l o s s in a c c u r a c y of our 
r e s u l t s . We h a v e s a v e d i n c o s t s and e a s e of d a t a c o l l e c t i o n by 
c o n c e n t r a t i n g a l l our e f f o r t s on 3 ou t of 8 l a n d i n g s i t e s , i n s t e a d of 
t ak ing obse rva t ions a t a l l of them, as we would i n o t h e r t y p e s of sample 
d e s i g n . Now we have t o pay t h e p e n a l t y fo r u s i n g t h i s g r o u p i n g , o r 
' c l u s t e r i n g ' of o b s e r v a t i o n s , by making allowance for the v a r i a t i o n between 
landing s i t e s . 

Our formula for the variance, i.e. 
becomes 

the square of the standard error, 

V(Y) = N(N-n) _1_ /£ ${. (gyj)2) + _N g MjCMj-mj) . 
n n-1 ^ir1 n n 1=1 mi 

mi 2 

mi-1 ̂  j=1 mi ' 
where 

Si 

Substituting the data from our example in this formula we have 

V(Y) = (§x2 x l x 221) + I 
3 2 3 

= 1A73 673 

(6x3 x 12.3) 
3 

= 2146 

(9x6 x 6.3) 
3 

(7x4 x 7.0) 
3 

The f i r s t term in t h i s e x p r e s s i o n r e p r e s e n t s t h e v a r i a t i o n be tween 
landing s i t e s . I t w i l l be noted tha t the c o n t r i b u t i o n t o v a r i a n c e due t o 
t h i s t e rm i s much g r e a t e r t h a n t h a t which i s due t o d i f f e r e n c e among 
second-stage u n i t s w i th in the f i r s t - s t a g e u n i t s . Th i s means t h a t i f we 
were going t o c a r r y out t h e e x e r c i s e a g a i n , i t would be p r e f e r a b l e t o 
inc rease the number of f i s h i n g s i t e s sampled, even i f i t meant t h a t we had 
to reduce the number of v e s s e l s sampled a t each s i t e . 
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We have in our example Se(y) =72146 = 46.3, therefore 

95% confidence limits are 531 ± 2 (46.3) 
= 531 + 92.6 

i.e. our estimate of the total landings, with 95 per cent confidence, is 
between 438 and 624 tonnes. 

6.8 Ratio estimation 

Ratios of population totals of two characteristics are as important 
as, and sometimes more important than, the population totals themselves. 
For example, we may obtain from a sample survey information on total catch 
and on total effort, and we may be more interested in estimating catch per 
unit effort than we are in estimating either of the totals. For surveys 
covering two different points of time, we may be more concerned with 
finding out whether total catches have gone up or down, than with measuring 
the level at any one point of time. 

We use the term ratio estimations to refer to the method of estimating 
a ratio of the population by means of a ratio of the unbiased estimators of 
two characteristics. Thus, if Y and X are unbiased estimators of Y and X 
respectively, then an estimator of the population ratio R=Y/X is given by 
the ratio estimator Y/X—R. 

In situations where the actual population value for the denominator 
(X) is known, it might be felt that to estimate the desired population 
ratio (R) all that is necessary would be to estimate the numerator (Y) ; 
thus Y/X—-R. However, if the estimators of the numerator and the 
denominator are approximately proportional (that is, if the two 
characteristics are highly linearly related with the line passing through 
the origin), then an estimator based on the ratio of the estimators of the 
numerator and the denominator is a more efficient method. 

The method has a possible application in fisheries statistics, if a 
country manages to conduct a complete census of all local fisheries to 
measure total catch in one year, and then wishes to monitor changes to the 
total catch in following years by a sample survey of fishing units. 

If we start by discussing a simple random sample, the approach we have 
discussed so far would be to select n fishing units out of the total of N 
units in the population, measure the catch, y, of each sample unit, and 
estimate total fish catch as Y=—J]y. 

N 
In the ratio estimate, we would ascertain the catch by each of the n 

fishing units in the present survey, and also the catch which those same 
units obtained in the census year. 

We use the notation here 

X = total catch by all fishing units in the census year 
y = catch by sample units in the present year 
x = catch by those same units in the census year 
Y = estimated total catch in the present year 
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Then we could say 
Y = Sy . X 

Ex 

This is a ratio method of estimating total catch by measuring for each 
sample unit the ratio of catch between two different periods. 

To put this in simple terms, we might come to a conclusion from our 
survey as follows: The total catch at last year's census was 420 tonnes. 
The catch by our sample boats has increased by five per cent since then, so 
we will estimate that the catch by all boats has increased by five per 
cent. Therefore, we estimate the catch this year to be 420+21 = 441 
tonnes. This is the line of reasoning we follow in ratio estimation: we 
calculate some ratio derived from a sample, in order to estimate population 
parameters. 

If we examine the estimator Sx»X, it is clear that X is not derived 
from a sample, so the sampling error will depend solely on the sampling 
error of the ratio EY_ , with X having only the effect of a constant 
multiplier. E x 

The formula can be modified to give a different weight or expansion 
factor to the selected units. It becomes 

Y -/ gwj yj\ x 

where w^ is the weight, or expansion factor of the ith unit. 

The actual formula for calculating standard errors for ratio estimates 
is complicated, and is beyond the scope of this course. We will simply 
observe that in some circumstances the ratio method of estimation leads to 
substantially lower standard errors. However, it is a biased method. 
Fortunately the bias tends to be negligible for moderately large samples. 
In many practical applications indeed, it is so small compared with the 
advantage gained in reducing the sampling error, that the ratio estimate is 
preferred to the unbiased estimate. 

6.9 Determining sample size 

A very important part of planning a sample survey is deciding how many 
units to sample, i.e. the size of the sample. The size of the sample will 
depend upon the resources we have available, i.e. the number of trained 
collectors, money, data analysis facilities, time, and on the degree of 
precision we need in the results. If we require only approximate 
estimates, a small sample may suffice, but if we require more exact 
estimates, a large sample may be needed. 

In order to determine the size of a sample we generally need the 
following kinds of information: 

(a) the total resources (money, manpower, etc.) 
available for the investigation; 

(b) the cost of collecting data from one unit; 
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(c) the expected variability in the population; 

(d) the required precision. 

It is unlikely that we will ever be able to have exact information on 
any of these, but we can often use approximations, estimates and data from 
previous surveys in order to gain some idea of the size of the sample we 
need. In some cases, results from a pilot survey will provide estimates of 
costs and also give an idea of variability. Assuming, therefore, that we 
have some idea of this kind of information we shall look at different types 
of sample to to see how we can determine the sample size. 

6.9.1 Simple random sample 

Let us s t a r t by l o o k i n g a t a s imp le example . Suppose we wish t o 
e s t ima te the average per c a p i t a f i s h consumpt ion p e r week from a s imp le 
random sample of peop le . We would l i k e to have 95 per cent confidence t h a t 
our e s t i m a t e w i l l be w i t h i n p l u s o r minus 0 . 2 kg p e r week. From l a s t 
y e a r ' s study we may have an e s t i m a t e ^ t h a t £he s t a n d a r d ^ d e v i a t i o n i s abou t 
0 .5 kg. Now we know t h a t the range X-2Se(X) t o X+2Se(X) equates t o our 95 
p e r cen t c o n f i d e n c e l i m i t s . For a s i m p l e r andom s a m p l e , we h a v e 
approx imate ly Se(X)=s/*jlri where s i s t h e e s t i m a t e d p o p u l a t i o n s t a n d a r d 
d e v i a t i o n . There fore , we have 

2Se(X) = 0.2 

and Se(X) = 7(0.5*/n) 

Thus y ( 0 . 5 2 ) / n = 0 .2 /2 

which gives n = 0 .25 /0 .01 = 25, i . e . we need t o sample about 
25 people . 

Quite o f t en , i n s t ead of spec i fy ing a t o l e r a n c e value (such as t h e 0 .2 
kg above) , we say t h a t we want t h e t r u e r e s u l t t o be w i t h i n a c e r t a i n 
percentage of our e s t i m a t e . For example, we might want to have 95 per cent 
c o n f i d e n c e t h a t t h e t r u e va^ue w^jll be w i t h i n t h e r a n g e X +. 5%X. I n 
g e n e r a l , we can w r i t e t h i s as X + pX and we have to specify p . 

We know t h a t 

( 1 - | ) ^ N n 

If we solve these two equa t ions for n, we have 

n . / 2 s \ * . 1 

U ) 1 • I /2if 
N \ p X / 

To see how t h i s works, we s h a l l use the following example: N=430; we know 
from p r e v i o u s s t u d i e s t h a t X=19 and s2=85.6 and we s p e c i f y p=0.10 ( o r 
10%). 

2Se(X) = pX and Se(X) -
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Then we have 

22x 85.6 

(0 .10 x 19)2 1 + J-
430 

1 
22x 85.6 

(0 .10 X 19)2 

= 78 

If we needed a precision of one per cent instead of ten per cent, we would 
have: 

4 x 85.6 1 
n 

(0.01 x 19) 1 + J_ 2 x 85-6 

430 (0.01 X 19)2 

= 411 

that is, we would have to sample nearly the entire population. In 
practice, we would not take a sample, but rather a census, if the required 
sample size is calculated to be as close to the total population as that. 

1 
We note that the second part of the expression for n, 

n \pX/ 

is the finite population correction factor. If — [—s-) is less than 
n \PX/ 

0.05, then we can safely approximate n by the expression 
1 

because then the term 1 /2s\2 ^s v e r v close to 1. 
fitf 

n \pX/ 
6.9.2 Stratified sample 

In stratified random sampling we have to decide both the total sample 
size and how to allocate sample size in each stratum. We have four main 
methods for choosing overall sample size and strata sample sizes. Which 
one we use depends on how much prior information we have about the 
variability in the population and strata and also on the costs of sampling 
each unit. We will examine each of the four methods. 

We introduce the symbols 

Cc = the cost of sampling one unit in the cth stratum 

d = maximum acceptable error (such as the 0.2 kg 
used in our example for simple random 
sampling) 

z = a variable whose value depends on the degree of 
precision required, expresed in number of 
standard deviations from the mean. If we 
want confidence limits of 95 per cent, we 
use the value 2 for z, or if we want confi­
dence limits of only 68 per cent, we use 
the value 1. Other values of z, for different 
confidence limits, can be found in tables of 
the Normal probability distribution. 
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Equal allocation 

In equal allocation we take the same number of samples from each 
stratum. Therefore we have only to determine the overall sample size n, 
and we sample nc = n/k units from each stratum. 

The formula for calculating n is: 

n = k 2 Nc2 sc
2 

N2!Z + S N C sc
2 

Z2 

We use the method of equal allocation in the following situations: 

(i) When the total numbers of sample units Nc in each 
of the k strata are more or less equal; 

(ii) When the stratum variances (sc2) and cost per 
sampling unit (Cc) do not vary much from stratum 
to stratum; 

(iii) When there is no prior knowledge of stratum variances 
(sc ) or cost per sampling unit (Cc). 

Proportional allocation 

The total sample size is allocated among strata in proportion to the 
size of each stratum. For example, if stratum 3 contains 25 per cent of 
the population, then 25 per cent of the overall sample will be taken in 
stratum 3. The formula for calculating the allocation per stratum is 

nc = Nc „ -c _t . n - wc . n 
N 

To calculate the overall sample size, n, 

n = N 2 Nc sc
2 

N2i! + S N C Sc
2 

z2 

We use proportional allocation when the stratum total number of units, 
Nc, varies from stratum to stratum, and when either the stratum variances 
and cost per sampling unit do not vary much from stratum to stratum or when 
we do not have any prior knowledge about stratum variances and costs. 

Nevman allocation 

The Neyman method is named after the famous statistician who developed 
the method. We use the Neyman method when the stratum variances s^ 
vary from stratum to stratum. The formula for allocation of sample size in 
stratum c is 

nc = Nc sc 
_ • n 
l.Nc sc 
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The overall sample size, n, is calculated thus 

(SN C SC)
2 

n = 
N2^ + E N C SC

2 

Optimum a l l o c a t i o n 

To use optimum a l l o c a t i o n we need some p r i o r knowledge of t h e s t r a t u m 
va r i ances and cost per s ampl ing u n i t i n each s t r a t u m . If bo th s t r a t u m 
v a r i a n c e , s c 2 , and c o s t pe r s ampl ing u n i t , C c , v a r y from s t r a t u m t o 
s t r a tum, then we w i l l ob t a in the g r e a t e s t p r e c i s i o n in our e s t i m a t e s i f we 
use the formulae for optimal a l l o c a t i o n . The sample s i z e i n each s t r a t u m 
i s 

Nc s c 1 
/Cc" n N c s c "c 

VCC 

and the formula for overall sample size n is 

( 2 N C SC fc~c) . (2!k_!£) 
n = 

N2!2 + S N C SC
2 

6.9.3 An example of sample size allocation 

To see how we may apply the four methods in practice, we will 
calculate sample sizes using each method for the following problem. 

Suppose that along a certain coast, the 100 places where fish are 
landed can be roughly graded into three classes according to the weight of 
fish landed. During a typical week, the weights landed are 

Large landing places : 45, 59, 87, 41, 71, 25, 9, 69, 10, 7 

Medium landing places: 17, 13, 19, 26, 1, 8, 27, 11, 12, 26 
5, 8, 10, 16, 16, 4, 16, 16, 13, 29 

14, 25, 29, 27, 20, 25, 2, 7, 3, 12 

Small landing places : 2 , 6 , 7 , 0 , 1 , 2 , 1 , 5 , 4 , 7 
8, 9, 3, 2, 5, 4, 2, 0, 2, 8 
5, 3, 8, 9, 8, 9, 1, 6, 5, 3 
3, 4, 7, 5, 5, 3, 2, 4, 6, 1 
6, 2, 5, 1, 0, 3, 8, 0, 4, 3 
3, 5, 5, 0, 7, 0, 9, 7, 9, 0 

C a l c u l a t i o n s on t h e comple t e c e n s u s of w e i g h t s l a n d e d show t h e 
fol lowing 

c=l 
c=2 
c=3 

Large landing places 
Medium landing places 
Small landing places 

Nc 

10 
30 
60 

sc 

28.91 
8.57 
2.81 

Xc 

42.30 
15.23 
4.20 
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In our formulae, we will use k=3, since landing places are divided 
into three strata. We want to have 95 per cent confidence that our final 
estimate from the stratified random sample will be within two units of the 
true total landed weight, therefore d=2 and z=2. 

If we suppose for the purposes of optimal allocation that each unit in 
strata 1 and 2 (large and medium landing places) costs $10.00 to sample, 
and each unit in stratum 3, the small landing places, costs $20.00 to 
sample, then Ci=10, C2=10, C3=20. Of course, with different costs we 
will get different sample size allocations from those worked out in this 
example. 

We now have all the information we need for the formulae to find n, 
ni, n2, and n3 for each of the allocation methods. We will not show 
the calculations but the results are given in Table 6.2. 

TABLE 6.2 : TOTAL AND STRATA SAMPLE SIZE FOR FISH LANDINGS 
USING FOUR DIFFERENT METHODS OF ALLOCATION 

Method 

Equal 
Proportional 
Neyman 
Optimal 

nl 

8 
5 
9 
10 

n2 

8 
16 
9 
10 

n3 

8 
32 
6 
5 

n 

24 
53 
24 
25 

The equal and proportional methods do not take into account the 
differences in standard error among strata. In the present example, the 
differences are large and, in proportional allocation, the overall sample 
size is more than twice that of all other methods. The large sample size 
is required because no weighting is given to sampling from the strata with 
the largest standard errors and so the overall sample size has to be 
increased to obtain the required degree of precision. Equal allocation 
does not require an exceptionally large sample size because rather large 
samples are taken from the strata with smallest numbers (N c), but 
greatest standard errors, i.e. strata 1 and 2. 

Neyman allocation takes into account the standard errors of the 
strata. We see that 9 units out of 10 should be sampled from the large 
landing sites because of the large standard error in this strata, 9 out of 
30 in the medium landing sites and only 6 out of 60 in the small landing 
sites where the standard error is small. The particular example of optimal 
allocation given here produces a similar sample allocation to that of the 
Neyman method, except that the relatively high cost of sampling the small 
landing places reduced the sample size in stratum 3 and slightly increased 
that of the other 2 strata. Different cost values would give different 
allocations. 

In practice, where the calculations of sample size indicate that 8 or 
9 out of 10 units should be sampled in a stratum, we would not sample but 
take a census of the stratum. Our overall estimated total landings would 
then have sampling errors due only to the strata which were sampled. 
Another example of a case where certain strata are completely enumerated 
and others are sampled only is the estimation of tuna catch. We try to get 
a census of large-scale foreign and domestic fishing vessel catches but we 
usually have to be content with sample estimates only of small-scale local 
catches. 
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In general, the recommended method of allocation is that method which 
uses the maximum information available. Therefore, if we have some 
estimates of the standard errors and per unit sampling costs in each 
stratum, we should use optimum allocation. If we have no idea of sampling 
costs, but we do have estimates of standard errors, then Neyman allocation 
is recommended. Equal and proportional allocation are used when costs and 
standard errors are not known. In the landing place example, equal 
allocation produced quite a reasonable allocation because of the inverse 
relationship between size of stratum and standard error. In other cases 
where the relationship is different, e.g. where standard error is 
proportional to stratum size or where no relationship exists, equal 
allocation will not be as good as proportional allocation. 

6.9.4 Some conclusions about sample size 

We usua l ly under take a sample survey because the c o s t s of a comple te 
census are l i k e l y to be too g r e a t . Usually money and o t h e r r e s o u r c e s a r e 
v e r y l i m i t e d , and i f we a r e u n d e r t a k i n g any k i n d of s t a t i s t i c a l 
i n v e s t i g a t i o n we have to make sure t h a t i t i s c a r r i ed out as e f f i c i e n t l y as 
p o s s i b l e . In t h i s s e c t i o n we have seen how, f o r d i f f e r e n t t y p e s of 
samples, we can decide how l a rge a sample we need for d i f f e r e n t p u r p o s e s . 
The va r ious formulae a re j u s t techniques for u s i n g p r i o r i n f o r m a t i o n fo r 
b e t t e r p lann ing . Very of ten the in format ion we have i s v a g u e , but t h e s e 
formulae can s t i l l provide a means for using t h i s . 

We have been looking a t the problem of d e c i d i n g on t h e b e s t sample 
s i ze by us ing informat ion about j u s t one v a r i a b l e . The problem i s t h a t in 
most of the surveys we undertake we a re i n t e r e s t e d i n c o l l e c t i n g d a t a on 
seve ra l c h a r a c t e r i s t i c s . We can make the sample design optimal fo r one of 
them, but t h i s does n o t g u a r a n t e e t h a t i t i s o p t i m a l f o r t h e r e s t . In 
p r a c t i c e , t h e r e i s no t a g r e a t d e a l we can do a b o u t t h i s ; i t w o u l d 
obviously be impossible to choose a d i f f e r e n t sample f o r eve ry v a r i a b l e . 
If we have s u f f i c i e n t information for severa l v a r i a b l e s , then we can t r y to 
f ind a sample design t h a t i s almost optimal for a l l of them. This w i l l be 
a compromise for each v a r i a b l e , bu t , o the rwi se , a l l we can do i s base t h e 
sample on t h e most i m p o r t a n t v a r i a b l e and h o p e t h a t i t i s n o t t o o 
i n e f f i c i e n t for the o t h e r s . 

6.10 Concluding remarks 

One f i n a l po in t on the whole t op ic of sampling needs t o be made, and 
i t i s a very important o n e . A l l our c a l c u l a t i o n s and fo rmulae in t h i s 
t o p i c have been based on t h e a s s u m p t i o n t h a t t h e sample i s random and 
unbiased . When we claim 95 per cent conf idence t h a t t h e t r u e p o p u l a t i o n 
mean i s w i th in two Se e i t h e r s ide of x, we have i m p l i c i t l y assumed t h a t x 
i s an unbiased e s t ima to r of X. 

We discussed b i a s e a r l i e r i n t h i s t o p i c , and we know t h a t in some 
surveys t h e r e a re s u b s t a n t i a l b i a s e s which we canno t e l i m i n a t e . In t h e 
r a t h e r un l ike ly event t h a t we a re ab le to measure t h e b i a s , we can s t i l l 
quote confidence l i m i t s . Thus, i f a b i a s B e x i s t s , i . e . i f we know t h a t 
the amount of d i sp lacement of t h e d i s t r i b u t i o n of x away from t h e t r u e 
p o s i t i o n of the p o p u l a t i o n mean i s +B, t h e n our 95 per cen t c o n f i d e n c e 
l i m i t s become (x - B - 2Se) to (x - B + 2Se) . 

However, in the g r e a t m a j o r i t y of s i t u a t i o n s we w i l l not have any 
measure of b i a s , even i f we a re aware t h a t i t e x i s t s . I t f o l l o w s t h a t i f 
we know or suspect t h a t t h e r e a r e s u b s t a n t i a l n o n - s a m p l i n g e r r o r s i n a 
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survey, it is a dangerous and misleading practice to express the results in 
terms of the mean and standard error, without any other qualification. The 
very fact that we publish a figure for standard error is likely to lead 
users of the statistics into believing that this is an accurate portrayal 
of the extent of errors in the results, and they are likely to assume that 
no other errors are present, unless we make it clear that this is not so. 
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