Guide to information sheets on fisheries management for communities #### © Copyright Secretariat of the Pacific Community (SPC) 2011 All rights for commercial / for profit reproduction or translation, in any form, reserved. SPC authorises the partial reproduction or translation of this material for scientific, educational or research purposes, provided that SPC and the source document are properly acknowledged. Permission to reproduce the document and/or translate in whole, in any form, whether for commercial / for profit or non-profit purposes, must be requested in writing. Original SPC artwork may not be altered or separately published without permission. Original text: English Secretariat of the Pacific Community Cataloguing-in-publication data Guide and information sheets for fishing communities / produced by the Secretariat of the Pacific Community - 1. Marine fishes Classification Oceania. - 2. Marine invertebrates Classification Oceania. - 3. Fishery management Oceania. I. Title II. Secretariat of the Pacific Community 338.3720995 AACR2 ISBN: 978-982-00-0504-4 Secretariat of the Pacific Community BP D5 98848 Noumea Cedex, New Caledonia Tel: +687 26 2000 Fax: +687 26 3818 Web: http://www.spc.int Prepared for publication at SPC Headquarters Noumea, New Caledonia, 2011 Printed by Stredder Print Ltd, New Zealand ## **Guide to information sheets** on fisheries management for communities This guide introduces a series of information sheets on important groups of marine species used for food in the Pacific Islands. The series has been produced by the Secretariat of the Pacific Community (SPC – www.spc.int) in collaboration with the Locally-Managed Marine Area (LMMA) Network (www.lmmanetwork.org). The purpose of the information sheets is to assist fishing communities, and people working with them, by providing information on species of interest and advice on **appropriate fisheries** management options for them. Community-based fisheries management involves fishing communities taking a key role in managing the fisheries resources on which they rely for both food security and livelihoods. To do this, communities require technical information and advice on the resource species involved. ## THIS GUIDE CONTAINS THE FOLLOWING SECTIONS: - 1. Information sheets available - 2. Fish in Pacific Island coastal fisheries - 3. Inshore fishing methods and gear - 4. Fisheries management by communities - 5. Fisheries management measures - **6.** Community-managed marine reserves or no-take areas - 7. Discussions in fishing communities - 8. Glossary of useful terms ## Information sheets available The sheets, listed by number below, provide information on important marine species that are common in Pacific Islands. Each sheet provides information on the species, distribution, habitats and feeding, lifecycle and reproduction, fishing methods and fisheries management options. The 16 information sheets are available from the Secretariat of the Pacific Community and other sheets may be produced based on demand. This guide should be kept for future use and reference when using the information sheets. The information sheets are not designed to enable the identification of various species; a number of national, FAO and SPC publications are available for this purpose. | Finfish | |-------------------------------| | 1. Groupers (Epinephelidae) | | 2. Rabbitfish (Siganidae) | | 3. Emperors (Lethrinidae) | | 4. Parrotfish (Scaridae) | | 5. Reef snappers (Lutjanidae) | | 6. Trevallies (Carangidae) | | 7. Mullets (Mugilidae) | | 8. Surgeonfish (Acanthuridae) | | Invertebrates | | | | | |------------------------------------|--|--|--|--| | 9. Sea cucumbers (Holothurians) | | | | | | 10. Giant clams (Tridacnidae) | | | | | | 11. Trochus (Tectus niloticus) | | | | | | 12. Mangrove crab (Scylla serrata) | | | | | | 13. Spiny lobsters (Palinuridae) | | | | | | 14. Coconut crab (Birgus latro) | | | | | | 15. Octopuses | | | | | | 16. Green snail (Turbo marmoratus) | | | | | ## 2 Fish in Pacific Island coastal fisheries Between 200 and 300 species of fish are caught in coastal fisheries in the Pacific Islands. The following table (from Dalzell and Schug, 20021) shows the average composition of landings from 15 locations in the western and central areas of the region. Approximately one-third of the catch total is made up of emperors (Lethrinidae), surgeonfish (Acanthuridae) and snappers (Lutjanidae). ¹ Dalzell, P. and Schug, D. 2002. Synopsis of information relating to sustainable coastal fisheries. Technical Report 2002/04. International Waters Programme, South Pacific Regional Environment Programme, Apia, Samoa. | Common name | Family name | Percentage | |--------------------------|---------------|------------| | Emperors | Lethrinidae | 13.32 | | Surgeonfish | Acanthuridae | 10.91 | | Snappers | Lutjanidae | 9.19 | | Trevallies | Carangidae | 7.19 | | Groupers | Epinephelidae | 6.96 | | Mullets | Mugilidae | 6.90 | | Parrotfish | Scaridae | 6.58 | | Tuna/mackerels | Scombridae | 5.53 | | Goatfish | Mullidae | 3.25 | | Rabbitfish | Siganidae | 2.92 | | Soldierfish/squirrelfish | Holocentridae | 2.69 | | Barraccudas | Sphyraenidae | 1.53 | | Bonefish | Albulidae | 1.36 | | Grunts | Haemulidae | 0.89 | | Needlefish | Belonidae | 0.81 | | Triggerfish | Balistidae | 0.74 | | Wrasses | Labridae | 0.52 | | Mojarras | Gerridae | 0.49 | | Garfish | Hemiramphidae | 0.17 | | Milkfish | Chanidae | 0.15 | | Surf perches | Theraponidae | 0.03 | | Others | 17.87 | | squids trevallies sharks tunas corals butterflyfish deepwater caridean shrimps reef slope gorgonians deepwater snappers massive Lithothamnion spiny lobsters A profile of a typical lagoon and barrier reef system with some representative marine species. surgeonfish coral reef branching boulder crown of thorns trochus **Darrotfish** fire corals sea stars corals Halimeda giant sea urchins lagoon rabbitfish barracudas sea cucumbers goatfish qarfish mullets penaeid prawns mangroves sardines tidal zone ovsters clams, ## 3 Inshore fishing methods and gear A large range of fishing gear is used in fishing communities and some basic types are described in this section. #### **REEF GLEANING** Collecting marine animals and seaweed in lagoons or on the reef flat at low tide is a common activity, particularly for women and children. A variety of species is collected in this way, including sea cucumbers, sea urchins, crabs, sea snails, seaweeds, eels, small fish, worms, jellyfish and octopuses. Lobsters are also collected on the reef at night. Collection can be done by hand, by digging in the sand or mud with the feet, by overturning or breaking corals and rocks, and by using sticks and hooks to draw octopus, crabs or fish from holes in the reef. Although the amount of food collected by one person in this manner may be guite small, damage to the reef and marine life can be considerable. #### **SPEARS** Spears are used in a variety of ways, both above and below the water. The spear may be used from land or a boat, or by diving beneath the water with sling-type spears and spear guns. Fishers often use torches and spears at night to catch fish at low tide. The use of modern, underwater flashlights has had a large impact on some inshore marine life. Some larger fish, such as parrotfish, sleep among the corals at night for protection from predators, making them easy targets for fishers with torches and spears. Masks, fins, SCUBA gear, steel spears and spear guns have also increased the effectiveness of spear fishing. #### **PORTABLE TRAPS** Cane, bamboo and mangrove wood traps have been used throughout the Pacific for hundreds of years. The use of modern materials, including synthetic netting and wire mesh, has made traps easier to build and their use is now more widespread. The principle of baited traps is that animals, attracted to the bait, enter the trap through tapered openings from which it is difficult to escape. Baited traps or pots are used to catch crabs and various flesh-eating species of fish. #### **BARRIER AND FENCE TRAPS** Barrier and fence traps are some of the oldest ways of community fishing. The simplest traditional traps use the falling tide to strand fish in v-shaped or semi-circular walls of stone or coral. Barrier nets can be set across reef passages and channels to trap fish as they try to return to deeper water on a falling tide. Fence traps usually consist of a fence or wall built at right-angles from shore-lines and reefs to guide migrating coastal fish into a large retaining area. When fish meet the fence they swim along it until they reach the retaining area from which it is difficult to escape. Designs are often traditional and vary between regions. Although originally made from stone or coral blocks, fence traps are now usually made from modern materials such as wire-mesh netting. Their ease of construction, as well as their use by increasing numbers of people, has resulted in decreases in many populations of fish such as mullet. #### **BAITED HOOKS AND LINES** Hook and line gear is used in a wide range of configurations. Handlining gear consists simply of one or more baited hooks attached to a line, which is weighted at the bottom when used to catch fish that live on the sea floor. Modern circle hooks are similar in design to the bone or shell hooks used since prehistoric times in the Pacific Islands. #### **LURES AND TROLLING (TOWING LURES)** Natural or artificial lures attached to lines may be towed (or trolled) behind boats in inshore areas to catch fish such as trevallies and snappers. In general, lures are designed to attract fish by having one or more of the following characteristics: an erratic movement when towed through the water (to resemble an injured prey), a bright or reflective surface, and fluttering appendages of feather, plastic, rubber or cloth. Instead of artificial lures, small silver fish such as garfish and flying fish, or pieces of larger fish, may be threaded onto
one or more hooks as a natural bait for trolling. Lures can also be used in casting. In this method, the lure is attached to a line on a fishing rod. The rod is used to cast the line and the lure into the sea and then used to reel the lure back in. #### **CAST NETS** A cast net is a circular net which is thrown (or cast) from the shore or from a small boat into shallow water. When the net is thrown it opens into a large rounded cone (like a parachute). Weights at its edge drag the net down over schooling fish and the net closes as it is hauled in. Catches include sardines, mullets, rabbitfish and scads. #### **SCOOP NETS** A scoop net consists of a cone-shaped net attached to a circular frame at the end of a handle. Scoop nets are used, sometime at night with the aid of a light, to catch small fish and prawns. #### **GILL NETS** Gill nets are panels of netting held vertically in the water by a series of floats attached to their upper edge (the floatline) and weights attached to their lower edge (the leadline). These nets are anchored in shallow water to catch several species of fish including mullet and mackerel. The nets are often made from almost invisible nylon strands, which lock behind the gill covers of fish. Gill nets have a mesh size designed to catch a specific size range of particular fish; a well-set gill net with the correct sized mesh will allow very small and very large fish to escape. #### **SEINE NETS** A seine net (sometimes called a beach seine if it is set from the shore) consists of a long panel of netting which is set around shore-line schools of fish and dragged ashore. The net is weighted to keep the lower side of the panel in contact with the sea floor, and has floats to keep its upper side at the sea's surface. Some beach seines have a central panel of loose netting which forms a bag (or codend) to retain fish. Ways of employing beach seines vary, but often one end of the net is anchored on the shore, and a boat is used to set the net in a large arc and back to the shore before hauling (see illustration). #### **RING NETS** A ring net is a panel of netting used to surround fish. Often, one end of the net is tied to a float and a boat is used to set the net in a circle around a school of fish. When the circle is completed, the end of the net is attached to the front of the boat. The net is then slowly pulled in from the back of the boat to reduce the size of the circle and concentrate the fish. The water is splashed to scare the fish into the net. Hauling of the net continues and the fish are removed as the net comes onboard the boat. Sometimes ring nets are used at night with a light mounted on the boat to attract fish. ## 4 Fisheries management by communities The main aim of fisheries management, whether by communities or national fisheries authorities, is to ensure that fishing is sustainable. If management is successful, seafood will continue to be available for local fishers both now and in the future Sustainable fishing means allowing adult fish to live long enough to breed and produce small fish, many of which will grow and be available to be caught in future years, and protecting the habitats on which the fish and other species rely. Important habitats include mangroves, seagrass beds and corals. This broad approach of managing not only fish but the areas in which they live has been called an ecosystem approach to fisheries management. When applied by fishing communities, the approach has been called the community-based ecosystem approach to fisheries management (CEAFM), that is, the management of fisheries, within an ecosystem context, by local communities working with government and other partners. Communities should use all available information to manage their seafood resources. Scientific information is available from community advisers, national fisheries agencies, non-government organisations such as the LMMA Network, and regional organisations such as SPC. It must be remembered that fisheries management is mainly about managing people. Often it involves preventing people from taking too many fish, using damaging fishing methods and harming the marine environment. But most of all, communities should take advantage of the knowledge of local fishers. People fishing locally will often know where and when fish breed. They may also know which fishing methods are damaging fisheries and the marine environment. Many methods or 'tools' are available to manage fisheries and some are listed in Section 5. Many of these have been applied by Pacific Island fishing communities for hundreds of years. Whatever management tools are used, it is necessary to determine whether they are achieving what they are meant to. For a community, the most appropriate indication is whether management measures are improving or sustaining catches in the managed area. Thus answers to certain questions, such as the following, are needed: - is the fish reserve working? Are numbers of fish increasing? - is the ban (or 'tabu') on fishing with nets increasing the numbers of fish? - is the tabu on catching certain species resulting in a greater number of fish? If the management measures taken by the community are not working then some other measures should be taken. This is the process of what fisheries scientists call 'adaptive management' – trying some sensible management measure and then seeing if it works; if it's not achieving results then it should be modified or other management measures should be tried. Community fishers are most interested in whether or not management measures are resulting in, or will result in, increased catches in local fishing areas. The most basic measures are catch rates and fish sizes (see points 7e and 7f in section 7). Catch rates refer to the amount of fish caught in a given fishing time or, alternatively, the amount of time it takes to catch a certain amount of fish, such as the time taken to catch a standard string of fish, a basket of clams, or a number of lobsters. - If this fishing time is increasing, the numbers of fish are probably decreasing and management is not effective. In this case, different or additional management measures should be applied. - If this fishing time is remaining the same, the numbers of fish are probably remaining the same. In this case, some additional, or adjustment to management measures could be considered. - If this fishing time is decreasing, the numbers of fish or other species are probably increasing. In this the case, the management measures taken are probably effective. This assessment based on information from local fishers has sometimes been called 'dataless management' as it is not based on time-consuming and often expensive surveys by fisheries scientists. ## 5 Fisheries management measures Fisheries management measures include the regulations applied by national fisheries authorities, and the rules made by a community, to try to ensure that fishing is sustainable and that fish stocks will continue to provide food in the future. A wide range of measures could be applied to protect different species and some of these are listed below. Not all of these measures are appropriate for all species. Each individual information sheet should be consulted for the management options that are appropriate for specific species. #### → Limiting the amount of fishing: a regulation that limits the number of people fishing or the time that can be spent fishing; for example by restricting fishing to members of a particular community. #### → Limiting the type or efficiency of fishing gear used: a regulation that bans or controls the use of damaging or over-efficient gear; for example, not allowing the use of gill nets over a certain length and with mesh sizes less than a certain size or banning the use of underwater breathing apparatus, such as SCUBA, in dive fisheries. #### → Limiting the amount of fish that can be caught: a regulation that places limits (bag limits or quotas) on the number or weight of fish caught; for example, the limits placed on trochus catches in some countries. #### → Minimum size limit: a regulation that specifies the smallest captured individual that may be kept, usually justified on the grounds that an individual should be allowed to reproduce at least once before being caught. #### → Maximum size limit: a regulation that specifies the largest captured individual that may be kept, usually justified on the grounds that larger females produce a greater number of eggs or that larger individuals are less valuable than smaller individuals. #### → Rejecting breeding female crustaceans: a regulation that requires fishers to return females bearing eggs to the sea in order to allow them to produce young. #### → Closing fishing areas and seasons: a regulation that bans fishing either during particular times or seasons or in particular areas, or during a combination of both; for example, a particular spawning aggregation site could be closed on a seasonal basis. #### → Fish reserves (permanent no-take areas): an area in which no fishing is allowed; benefits may include allowing numbers of fish to increase and individuals to grow and reproduce; a community's expectation is often that banning fishing in part of its traditional fishing area will eventually improve fish catches in nearby areas. Fish reserves are discussed as a special case in Section 6. It is important to note that none of the measures will be of any use unless people agree to respect any management rules made and unless these are enforced by community leaders. In most fisheries a mixture of one or more of the above management measures or regulations may be needed to achieve the sustainability of fish stocks. ## 6 Community-managed fish reserves or no-take areas Because fish reserves, marine reserves or notake areas have been established or are being considered by many communities in various Pacific Islands, they are discussed here as a special case. However, establishing a
no-take area is just one of the management measures that can be taken to protect fish populations; they do not work equally well in protecting all marine species. Nevertheless, no-take areas have the potential to protect many of the plants and animals (the biodiversity) of an area including fish habitats, ecosystems and the species that depend on them. However, local people who require a daily supply of seafood are more interested in whether or not the reserve will result in increased catches in nearby local fishing areas. The effectiveness of a marine reserve depends on several things including the size and location of the reserve and the species that are being managed. In general the following points should be considered: - → For species that move a lot (highly mobile species) such as mullet, a small reserve will not be of any use; - → For species that move to distant spawning areas, a local small reserve will not protect them from being over-exploited as they move to, or gather in, spawning aggregations; - → For some species with a short drifting larval stage (for example, trochus), reproduction will produce juveniles that are likely to become distributed within the reserve and in nearby fishing areas. This suggests that even small local marine reserves may be effective in building up local populations, especially if the reserve is positioned so that the larvae are carried by currents from the reserve into the fishing area; - → For some species with a long larval stage (for example, lobsters) reproduction will produce juveniles that are likely to become distributed in areas some distance from the reserve and local fishing areas. This suggests that local fish reserves may not be so effective in building up local populations of such species. Such reserves may be beneficial on a wider regional or country-wide scale, particularly if there are a large number of small reserves spread over a coastline. # Managed areas A managed area is one that contains the resources that are to be managed. In many cases, this includes the traditional fishing grounds of a community and, often, the area over which a local community, or several communities, has some degree of control. The above sketch map of a managed area shows key features including a mangrove forest, fringing reef, coral reef and various fishing areas. The managed area may include, although not necessarily, a no-take area. Note that the no-take area has been positioned so that the current is likely to distribute the small floating forms (the larvae) from the reserve into the fishing area. ## 7 Discussions in fishing communities This section provides a guide for topics that should be discussed in fishing communities. Such discussions are essential in all community-based resource management approaches to ensure that the best use is made of local and traditional knowledge. This approach also ensures that fisheries management is 'owned' by the fisheries community. #### a) What are the local names for this (these) species? Common names within a country may differ from place to place. It is important to be sure that everyone is referring to the same species or group of species. It may be helpful to have some illustrations or photographs of the species available during meetings. #### b) Are there any national fisheries regulations that apply to this (these) species? National regulations take precedence over community rules. It is important to know if there are any regulations that apply and that the fishers in the community are aware of them. Community rules must not contravene or contradict national laws and regulations. #### c) What is the community's fishing area for this species (or species group)? The fishing area should be recorded in a sketch map of the managed area (or the area intended to be managed) with items of interest, such as reefs and shoreline landmarks, included. A sketch map including many such features is shown in the box. Take note of areas that are being affected (for example, by siltation, rubbish dumps, and pollution) through the actions of people, including those outside the community. #### d) Does the community have some control over its fishing area? Some communities have traditional control over adjacent fishing areas. If communities have no traditional control, some countries, such as Tonga, have established Special Management Areas (SMAs) to allow coastal communities to manage their fisheries. #### e) How have catch rates (catch per day or fishing trip) changed over the past 10 years? It is important to have some idea of any changes in catch rates. For example, how long did it take to catch a basket or a string of fish 10 years ago and 5 years ago; how do these catch rates compare with those at present? As a very general rule, if it takes people twice as long to catch the same amount of fish as in the past, the fish stock is likely to be fully exploited. If it takes people more than twice as long to catch the same amount of fish as in the past, the fish stock is likely to be overexploited. #### f) How have fish lengths changed over the past 10 years? Fishing usually removes the larger fish from fish populations. If the average (or usual) size of a particular species in catches is decreasing, it may mean that the species is being too heavily fished (or being overfished). Management measures are needed to protect the species. #### g) What fishing methods are used by fishers in the community? The community may use fishing methods that are different from the general ones given in the information sheets. Are any of these fishing methods harmful to the species' population or the marine environment? #### h) Does the species have particular spawning seasons or spawning areas? Members of the community may have answers to this question. This information could be used by the community in managing the fishery, for example, by reducing or stopping fishing at certain times of the year or in certain areas. #### i) What can be done to make catches of the species more sustainable? Members of the community may suggest practical management actions that could be taken. These suggestions should be discussed with the options given in the various information sheets. #### j) Does the fishing community have the motivation and ability to take management actions in the interests of sustainable fish catches and the well-being of future generations? The three ingredients of successful communitybased fisheries management are awareness, concern, and action. In other words, a community must be aware of their fisheries problems and sufficiently concerned about these to take strong, independent actions. #### k) Is the fishing community willing to enforce any management rules that it makes? The success of community-based fishing management relies heavily on all members of the community respecting the management rules that are made. What would the community or its leaders do about those who disregard the management rules made by the community? ## **8** Glossary of useful terms Although information sheets in the series have been prepared using as few technical terms as possible, the following definitions may be useful. #### Adult: A mature, grown-up stage in a species life cycle. #### Ciguatera: Fish poisoning resulting from eating fish that have built up poisons by eating particular very small plants (phytoplankton) that are associated with coral reefs. A cartoon used to raise community awareness of ciguatera in Pacific Islands is shown at the end of this section. #### Community rule: A rule (similar to a nationally-imposed regulation) that is decided on, agreed to and enforced by a fishing community. ## Community-based ecosystem approach to fisheries management (CEAFM): The management of fisheries within an ecosystem context (including fishers, fish and their habitats) by local communities working with government and other partners. This includes the management of shore-based activities (such as agriculture and farming) that affect the marine environment. ## Community-based fisheries management (CBFM): Arrangements under which a community takes responsibility, usually with government or NGO assistance, for managing its coastal environment and fisheries. #### Customary marine tenure (CMT): Legal, traditional or de facto control of land, sea and resources by indigenous people. #### Destructive fishing: Methods of fishing that are harmful to populations of fish (for example, fishing on spawning aggregations) or the marine environment (for example, the breaking of coral to catch small fish and the use of poisons or dynamite to capture fish). #### Ecosystem: A system containing plants and animals (including humans) which interact with each other as well as with the non-living components of the environment. #### Eggs: Cells produced by a female, which can develop into new individuals when fertilised by sperm. #### Fish reserve (no-take area): An area in which no fishing is allowed. #### Food web: The feeding relationships connecting all plants and animals #### Habitat: The natural home of an animal such as a fish or clam. #### Hookah: Gear that pumps air to people diving underwater without the use of SCUBA. #### Juvenile: The young of a species not yet able to reproduce. #### Key habitats (or critical habitats): The most important habitats in the life cycle of species; for fisheries these may include nursery and spawning areas such as estuaries, mangroves, seagrass meadows and reefs. #### Larva (plural larvae; pronounced lar-vee): In marine species, often the very small floating stages between eggs and juveniles. #### Managed area: The area containing the resources that are to be managed, often the traditional area controlled to some extent at least by a local community or several communities. #### Marine Protected Area (MPA): A protected marine area set aside by law or other effective means to provide degrees of preservation and protection for important marine biodiversity,
resources and habitats depending on the degree of use permitted. Fishing may be regulated and could be prohibited in some part or all of an MPA. In some Pacific Island countries, the term is often used imprecisely to denote a no-take area in which fishing is prohibited. #### No-take area (or Fish reserve): An area in which no fishing is allowed. #### Overexploitation or overfishing: The fishing or exploitation of a population (including fish, clams, crabs and others) to a level that is not sustainable, that is, fishing that will result in catches continuing to decrease over time. #### Pollution (marine): The introduction by humans, either directly or indirectly, of any substance into the sea which results in harm to the marine environment. #### Scientific name: A name of a species that is the same in all countries and in all languages. It consists of two parts – the genus name (a grouping of individuals with some common features) and the species name (individuals within a genus with many common features) – for example, the white teatfish, *Holothuria fuscogilva* and the black teatfish, *Holothuria whitmaei*, are similar enough to be in same genus but are sufficiently different to be regarded as separate species. #### **SCUBA:** Self-Contained Underwater Breathing Apparatus which consists of an air bottle or tank with a regulator and mouthpiece such as the aqualung. #### Spawning aggregation: A grouping of a single type of fish, gathered together in greater numbers than normal for the specific purpose of reproducing. Many aggregations form at the same place and the same time each year. The best-known examples are certain species of grouper and snapper, but many surgeonfish, rabbitfish, parrotfish, and wrasses also aggregate to spawn. #### Spawning site: The place at which a species gathers in a spawning aggregation. #### Spawning: The act of releasing eggs and sperm. #### **Species:** A group of living things in which individuals are, in many ways, the same and are capable of breeding with each other. #### Sperm: Substance released by males that is capable of fertilising the eggs produced by females. #### Subsistence fishery: A fishery in which the catches are shared and consumed directly by the families of the fishers and community members rather than being sold. #### Sustainable: Something (in this case, fishing) that can be kept up forever. #### Underwater breathing apparatus: Equipment, such as SCUBA or Hookah, which allows a person to breath air or gas while underwater. #### Wetlands: Low-lying areas on land that are flooded by tides and either contain or are saturated with water. Examples include salt marshes, coastal swamps and mangrove forests. ### The sequence of events in ciguatera poisoning: A. A very small plant (a dinoflagellate) occurs as a film on corals and seagrasses. It is not usually abundant, but numbers increase dramatically when high levels of nutrients are available. Nutrients increase naturally during the wet season with runoff from the land and during cyclones when nutrients are released from damaged shorelines and coral reefs. Nutrients also increase when sewage and agricultural fertilisers enter coastal waters. - B. Small fish eat the tiny plants that contain the poison. - C. Larger fish eat the smaller fish and so the poison builds up to dangerous levels in some larger fish. - D. People eating these fish suffer from tingling, numbness, muscle pains, and a curious reversal of temperature sensations (cold objects feel hot to touch). In extreme cases, death occurs through respiratory failure. This booklet and the information sheets have been prepared by Michael King with information and comments supplied by Mike Batty, Lindsay Chapman, Ian Bertram, Hugh Govan, Simon Albert, Etuati Ropeti, Being Yeeting, Kalo Pakoa, Aymeric Desurmont, Jean-Baptiste Follin, Maria Sapatu, Simon Foale, Ron Vave, Toni Parras, Jovelyn Cleofe, Alifereti Tawake, Chito Dugan, Michael Guilbeaux, Helen Sykes, Wendy Tan and Magali Verducci. **Booklet:** cover photo by Matthieu Juncker; other photos by Etuati Ropeti, Franck Magron and Pierre Boblin; inside illustrations by Michael King. **Information sheets:** colour illustrations by Les Hata, Rachel O'Shea and Hazel Adams; line drawings by Michael King. Layout design by Jean-Baptiste Follin. #### **SECRETARIAT OF THE PACIFIC COMMUNITY** #### BP D5 • 98848 NOUMER CEDEX • NEW CALEDONIA Telephone: +687 26 20 00 Facsimile: +687 26 38 18 Email: cfpinfo@spc.int http://www.spc.int/fame The Locally-Managed Marine Area (LMMA) Network Improving the practice of marine conservation Email: info@lmmanetwork.org http://www.lmmanetwork.org (Epinephelus fuscoguttatus) ## **Species & Distribution** Peacock hind (Cephalopholis argus) Honeycomb grouper (Epinephelus merra) There are approximately 160 species of groupers. The species vary greatly but most have a wide body with a large head and mouth. Many species are well camouflaged in spots of yellow, green and brown. Different species are found in tropical and temperate waters around the world. In the Pacific the number of species generally decreases from west to east but important food species are found in all tropical islands. The giant grouper, Epinephelus lanceolatus, is one of the largest bony fish in the world and grows up to 3 m long and weighs up to 600 kg. Many of the smaller groupers (40 to 50 cm long) are more important in the catches of coastal communities, however. Giant grouper ## **Habitats & Feeding** The key habitats in the life cycle of groupers are the shallow water areas of coral rubble (where the young fish settle), the coral reef (where the adults live) and the spawning aggregation sites (where adults gather to reproduce). Adults of many species appear to have relatively small home ranges (areas in which they live and feed) and one male may have a group of several females in an area of reef. Groupers are not fast swimmers over long distances and they often lie in wait for their prey or use their mouths and gills as powerful pumps to suck their prey from crevices. They eat fish, small sharks, juvenile sea turtles, octopuses and spiny lobsters. ### Reproduction & Life cycle Most groupers grow relatively slowly and various species live for 5 to 15 years. Generally, several common species reach reproductive maturity at 30 to 50 per cent of their lifespan. Most grouper species start out life as females (o) and change sex to males (o') at an age of about half their lifespan (that is, from 3 to 7 years depending on species). Many species move to particular areas at the same time each year to reproduce in spawning aggregations. In these aggregations, females release eggs (some larger individuals produce over 1 million eggs) and these are fertilised by sperm released by males. The fertilised eggs hatch to very small forms (larval stages) which drift in ocean currents for 1 to 2 months. Less than one in every thousand of the small floating forms survives to settle as a juvenile in shallow water near reefs. As they grow, they move onto coral reefs and less than one in every hundred of the young fish (juveniles) survives to become an adult. ## Fishing methods Groupers are caught using baited hooks and lines, baited traps, gill nets and spears. They aggressively strike baited hooks before retreating into coral crevices where they use their powerful gill muscles to lock themselves in. Spearing is done during the evening or at night when the groupers are most active. Groupers caught in baited traps are important in the live fish trade. Many groupers are caught as they gather in large groups to breed (in spawning aggregations). Fishing in this way is destructive as these breeding fish are responsible for producing small fish, many of which will grow and be available to be caught in future years. ### Management measures & Options Several management measures have been used on groupers in fisheries. These measures include limiting the numbers of fishers (through fishing licences), limiting the amount of fish caught (quotas) and restricting the type of fishing gear used. These measures are generally used more often in commercial fisheries than those in communities. Minimum size limits have been imposed (but often poorly enforced) in several countries. However, minimum size limits applied to a species that changes sex from female to male may not help. If only large individuals can be legally caught, the catches will be made up of almost all males, leaving mostly females in the population. Options for community-based management include: - → a ban on gill nets which, especially if used on spawning aggregations, have been responsible for reducing the number of breeding fish; - → a ban on spear fishing at night, which has been responsible for removing many large fish from extensive areas of reef. Fishing communities usually have some local knowledge of the timing and location of spawning aggregations and this information makes the following options possible: - → a ban on fishing in areas (sites) where spawning aggregations occur - which assumes that the community has some control over the spawning sites which may be some distance away; - → a ban on fishing during the peak of the spawning season, which may involve several short closures at monthly intervals as some species appear to aggregate at particular times in the moon cycle. This information sheet has been produced by SPC (www.spc.int) in collaboration with the LMMA Network (www.lmmanetwork.org) to assist people working with fishing communities in providing advice on appropriate fisheries management options. Please refer to guide book for an explanation of terms used in this information sheet. Photos by Eric Clua and Matthieu Juncker. # Rabbitfish (Siganidae) ## **Species & Distribution** The family Siganidae includes 28 species, commonly called rabbitfish, in a single genus, Siganus. Rabbitfish have small mouths and many species are covered in maze-like patterns. The fin spines
are equipped with poison glands that are capable of giving a painful wound. Rabbitfish are widely distributed across the Indian and Pacific Oceans. ## **Habitats & Feeding** Adult rabbitfish are active in estuaries, lagoons and shallow coral reef flats during the day. Many species form feeding schools and graze over large areas of seagrass. The key habitats in the life cycle of rabbitfish are the areas (sites) at which they gather to breed in spawning aggregations. Rabbitfish feed on seaweed and seagrasses and, like parrotfish, they are believed to be responsible for keeping coral free of suffocating plant growth. They appear to graze continually on seagrass beds. Because rabbitfish are eaten by a large number of reef fish, they are important in coral reef food webs. ### **Reproduction & Life cycle** Rabbitfish have separated sexes and grow moderately quickly. Different species may become sexually mature within 1 or 2 years (at a length of about 15 cm) and reach lengths of over 40 cm. Most species appear to have an extended reproductive season with waves of spawning that are linked to the moon cycle, often around the period of the new moon. They form large gatherings to breed (in spawning aggregations), often at sites with access to the open sea. Half a million to more than 2 million eggs may be released by each female (Q) and these are fertilised by sperm released by the males (O'). The fertilised eggs become attached to the sea floor before hatching to small forms (the drifting larval stages), which float in the sea for 1 to 2 months; less than one in every thousand survives to become a juvenile. Juveniles often arrive at shallow seagrass beds in dense schools, sometimes called bait balls. Less than one in every hundred of these juveniles survives for the 2 years or so that it takes for them to become adults. ## Fishing methods Rabbitfish are caught by using several different fishing methods: - spears are used at night when the fish are inactive and lying motionless on seagrass beds; - gill nets and beach seines are used to catch feeding schools and to catch the breeding fish; - small-mesh nets, cast nets, and seine nets are used to catch "bait balls" of juvenile fish; - → baited hooks and lines are also used, even though the fish are mainly plant eaters. Many rabbitfish are caught as they gather in large groups to breed (in spawning aggregations). Fishing in this way is destructive as these breeding fish are responsible for producing small fish, many of which will grow and be available to be caught in future years. ## Management measures & Options Several management measures have been applied to rabbitfish. Minimum size limits have been applied in many Pacific Island countries but it is doubtful that any nationally imposed regulation could be enforced over a large coastline with many fishing communities. Catch (bag) limits have also been applied, but such a measure is usually inappropriate in community fisheries unless the catch is to be sold. Some fishing communities have banned night fishing with spears because the fish are vulnerable when sleeping in seagrass. In some areas the banning of gill nets by fishing communities has protected against the overharvesting of rabbitfish on their spawning migrations and in their spawning aggregations. However, the permanent banning of gill net fishing may be unreasonable as adult rabbitfish (as well as mullet) are difficult to catch by other methods. An alternative is to restrict the use of small-mesh gill nets by imposing a minimum mesh-size. The setting up of a community-managed area where no fishing is allowed (a no-take area) may allow fish numbers to increase but will not protect the fish during their spawning migrations and at their aggregation sites unless other measures are taken. Fishing communities usually have some local knowledge of the timing and location of spawning aggregations and this information makes the following management options possible: - a ban on fishing in areas (sites) where spawning aggregations occur, which assumes that the community has some control over the spawning sites perhaps some distance away; - a ban on fishing during the peak of the spawning season, which may involve several short closures at monthly intervals as some species appear to aggregate around the period of the new moon. Combining one or both of the above two measures with restricting mesh-sizes in nets used and the protection of local seagrass beds may be the most effective actions a community can take to address the sustainability of rabbitfish fisheries. This information sheet has been produced by SPC (www.spc.int) in collaboration with the LMMA Network (www.lmmanetwork.org) to assist people working with fishing communities in providing advice on appropriate fisheries management options. Please refer to guide book for an explanation of terms used in this information sheet. Photos by Matthieu Juncker. # Emperors (Lethrinidae) Thumbprint emperor (Lethrinus harak) ## **Species & Distribution** The Lethrinidae family of fish includes about 20 different species of emperors, which are found almost entirely in the tropical waters of the Indian and Pacific oceans. Features common to all species include thick lips, strong jaws, and cheeks without scales. In the Pacific Islands, two common species are the spangled emperor, *Lethrinus nebulosus*, which has blue spots on its body and blue lines below its eyes, and the trumpet emperor, *Lethrinus miniatus*, which has a grey body with red areas near its eyes, mouth and fins. ## **Habitats & Feeding** Most species of emperors live on coral reefs or areas associated with them, including sandy areas and seagrass beds in lagoons. Some species live on rocky reefs down to depths of more than 200 m. The juveniles of some species live in shallow seagrass and mangrove areas. Emperors are bottom-feeding fish that eat sea snails, crabs, sea urchins, worms and many other animals that live on the sea floor. Some of the larger species feed on other fish. They are eaten by a range of larger fish including sharks. ### Reproduction & Life cycle Most species of emperors begin life as females (ϕ) and change sex to become males (σ ') as they grow. In general, common species of emperors reach reproductive maturity at 30 to 50 per cent of their lifespan. The spangled emperor, for example, grows to a maximum of 90 cm over a lifespan of about 25 years and reaches reproductive maturity at a length of about 45 cm in 8 to 9 years. Spawning aggregations may occur at the time of the new moon or the full moon in particular months. These aggregations occur in various places, including the edges of barrier reefs and in channels and passages. Each female releases many thousands of eggs and these are fertilised by sperm released by males. In most reef-associated emperors, fertilised eggs hatch within a day or two into small forms (larval stages) that drift with currents for about a month. Less than one in every thousand of these survives to settle on reefs as a juvenile. And less than one in every hundred juveniles survives the 8 to 9 years it takes to become a mature adult. ## Fishing methods Fishing methods for emperors include: - → baited hooks and lines; - spearfishing, usually during the day; - → seine nets and cast nets used in shallow lagoons; - gill netting is the main fishing method and is often used on spawning aggregations. Many emperors are caught as they gather in large groups to breed (in spawning aggregations). Fishing in this way is destructive as these breeding fish are responsible for producing small fish, many of which will grow and be available to be caught in future years. ## Management measures & Options Management measures applied to fishing for emperors include limiting the numbers of people fishing, limiting the amount of fish caught (bag limits or quotas) and restricting the type of fishing gear used. These measures are generally used more in commercial fisheries than in community-based fisheries. Several Pacific Island countries have imposed minimum size limits (between 15 and 25 cm length from the tip of the mouth to the middle of the tail) although in most cases the particular species of emperor to which the regulation applies has not been stated. Taking into account the wide variation in sizes of the different species of emperors, these size limits would be of little use for larger species. They would not protect species such as the spangled emperor, for example, which does not reproduce until it reaches a size of about 45 cm. To be effective, size limits should be applied to particular species. In addition, because emperors start life as females and later change sex to become males, most of the smaller fish caught are female and the larger ones are male. Catching large, legally-sized fish, therefore, would leave many females but very few males in the sea. The most effective community-based management strategy for emperors is likely to involve the protection of breeding adults. Community-managed fish reserves (no-take areas) will not protect reproducing fish that migrate to spawning sites. However, fishing communities usually have some local knowledge of the timing and location of spawning aggregations and this information makes the following options possible: - a permanent ban on fishing in areas (sites) where spawning aggregations occur, which assumes that the community has some control over the spawning sites that may be some distance away; - a temporary ban on fishing during known spawning times; as emperors spawn at various phases of the moon this may mean a series of short closures at appropriate times. This information sheet has been produced by SPC (www.spc.int) in collaboration with the LMMA Network (www.lmmanetwork.org) to assist people working with fishing communities in providing advice on appropriate fisheries management options. Please refer to guide book for an explanation of terms used in this
information sheet. Photos by Bruno Manach and Matthieu Juncker. ### **Species & Distribution** The family Scaridae includes over 90 species of fish known as parrotfish. Parrotfish have evolved bright colours and teeth fused into parrot-like beaks. Most species reach 30 to 50 cm in length. The largest species, the green humphead parrotfish, *Bolbometopon muricatum*, may grow to 1.3 m long, and weigh up to 46 kg. Parrotfish are found in relatively shallow tropical waters throughout the world and the largest number of species is found in the Indian and Pacific oceans. ## **Habitats & Feeding** Parrotfish are found on rocky coasts and in seagrass beds as well as on coral reefs. At night parrotfish sleep in crevices or holes after wrapping themselves in a transparent covering or cocoon of mucus. The mucus may repel parasites or hide the scent of the fish from night-time predators. The key habitats in the life cycle of parrotfish are coral reefs and, in many species, the areas where they gather to breed (the spawning aggregation sites), often on the outer reef slope or in channels. With their fused teeth, parrotfish scrape coral to feed on plant growth and some may feed on the very small plants (zooxanthellae) living within the coral. Some of the coral surface is eaten and this helps with the digestion of the plant material. They graze large quantities of coral to gain small amounts of food and continually release clouds of fine coral particles. As each adult parrotfish can produce about 90 kg of coral particles each year, their contribution to the sand of lagoons and tropical beaches is important. Their feeding activity also prevents coral becoming smothered by plants. The predators of parrotfish include moray eels, snappers and a wide range of larger reef fish. ### **Reproduction & Life cycle** Almost all species of parrotfish start life as females (ϕ) and later in life change to the vivid green or blue coloured males (ϕ). Some species have relatively fast growth rates, are able to reproduce within 2 to 3 years, and have an average lifespan of 5 to 6 years. However, larger species appear to grow more slowly and reach ages of more than 15 years. Some parrotfish species move to particular areas to reproduce in large spawning aggregations. In these aggregations, each female produces thousands of eggs which are fertilised by sperm released by the males. Within about 25 hours, the fertilised eggs hatch into small forms (the drifting larval stage) about 1 mm long. These drift in the sea for an unknown length of time before settling on coral reefs. ## Fishing methods Methods used to catch parrotfish include: - gill nets; this common fishing method is often used in areas containing large groups of breeding fish; - spearfishing; often with underwater torches during the night when the fish are sleeping under coral. Many parrotfish are caught as they gather in large groups to breed (in spawning aggregations). Fishing in this way is destructive as these breeding fish are responsible for producing small fish, many of which will grow and be available to be caught in future years. This information sheet has been produced by SPC (www.spc.int) in collaboration with the LMMA Network (www.lmmanetwork.org) to assist people working with fishing communities in providing advice on appropriate fisheries management options. Please refer to guide book for an explanation of terms used in this information sheet. Photos by Matthieu Juncker. ## Management measures & Options Minimum size limits have been applied to parrotfish in some Pacific Islands, which may not be beneficial in species that change sex from female to male as they grow. If only large individuals can be legally caught, catches will be made up of almost all males, leaving an excess of females in the population. Catch limits (quotas or bag limits) have also been applied to parrotfish but generally such measures are not suitable for community fisheries. Some countries have placed minimum mesh sizes on gill nets and banned the use of underwater breathing apparatus when spear-fishing. Fish reserves (areas where no fishing is allowed), particularly if small, are generally not suitable for protecting parrotfish. This is because they move over wide areas to feed and make long migrations to spawning aggregation sites. Fishing communities usually have some local knowledge of the timing and location of spawning aggregations and this information makes the following management options possible: - → a ban on fishing during the times of forming spawning aggregations, which may require a number of short closures as some species spawn several times each year; - → a ban on fishing at known spawning areas or sites. Additional community actions could include: - → a ban on fishing for parrotfish using spears at night; some communities have already taken this action because this fishing method has been responsible for removing all large parrotfish from local fishing areas; - a ban on the use of small-mesh gill nets; this action may allow smaller fish to escape and grow to a size when they can reproduce. # Reef snappers (Lutjanidae) ## **Species & Distribution** The family Lutjanidae contains more than 100 species of tropical and sub-tropical fish known as snappers. Most species of interest in the inshore fisheries of Pacific Islands belong to the genus *Lutjanus*, which contains about 60 species. One of the most widely distributed of the snappers in the Pacific Ocean is the common bluestripe snapper, *Lutjanus kasmira*, which reaches lengths of about 30 cm. The species is found in many Pacific Islands and was introduced into Hawaii in the 1950s. ### **Habitats & Feeding** Although most snappers live near coral reefs, some species are found in areas of less salty water in the mouths of rivers. The young of some species school on seagrass beds and sandy areas, while larger fish may be more solitary and live on coral reefs. Many species gather in large feeding schools around coral formations during daylight hours. Snappers feed on smaller fish, crabs, shrimps, and sea snails. They are eaten by a number of larger fish. In some locations, species such as the two-spot red snapper, *Lutjanus bohar*, are responsible for ciguatera fish poisoning (see the glossary in the Guide to Information Sheets). ## Reef snappers (Lutjanidae) ### Reproduction & Life cycle Snappers have separate sexes. Smaller species have a maximum lifespan of about 4 years and larger species live for more than 15 years. Many common species grow to sizes of 25 to 35 cm and reach reproductive maturity at about 45 per cent of their maximum size (that is, 11 to 16 cm in the most common species). Snappers generally spawn throughout the year in warmer waters but during the warmer months in cooler waters. Many snappers travel long distances to particular areas along outer reefs and channels to breed (in spawning aggregations), often around the time of the new moon and full moon. During breeding, females (ϕ) release eggs (often more than 1 million) and these are fertilised by sperm released by males (σ). In most reefassociated snappers, fertilised eggs hatch within a day or two into small forms (larval stages) that drift with currents for about 1 month. Less than one in every thousand of these small floating forms survives to settle on a reef as a young fish (juvenile). And less than one in every hundred juveniles survives the period of 3 to 8 years that it takes to become a mature adult capable of reproducing. ## Fishing methods Snappers are most often taken by using baited hooks and handlines but are also caught by using spears, traps and gill nets. Many snappers are caught as they gather in large groups to breed (in spawning aggregations). Fishing in this way is destructive as these breeding fish are responsible for producing small fish, many of which will grow and be available to be caught in future years. ## Management measures & Options Minimum size limits for snappers have been applied in some countries (e.g., 30 cm length from the tip of the mouth to the middle of the tail). However, the particular species of snapper is not usually stated. Taking into account the wide variation between snapper species, this size limit would be of little use in protecting larger species. Size limits should be applied to individual species. Some countries have restricted fishing methods to the use of hook and line only. Catch (bag) limits have also been applied but such a measure is usually inappropriate in community-based fisheries. Locally managed fish reserves (no-take areas) could be established but, for species that travel long distances to spawning sites, these will not protect reproducing fish. However, if spawning times and areas are known by local fishers, the following management actions are possible: - → a ban on fishing during the times that fish form spawning aggregations, which may require a number of short closures (say for 3 to 4 days) around the periods of new moon and full moon, depending on the particular species; - a ban on fishing at known spawning areas or sites; such sites may include particular areas along outer reefs and channels where snappers are known to gather to breed. Additional community actions could include: - → support for local national minimum size limits or (if not available) set communitybased minimum size limits at about 50 per cent of the maximum size of the species; - → a ban on the use of gear such as gill nets which catch too many fish; - a restriction on small-mesh gill nets; enforcing a minimum mesh size may allow smaller fish to escape and grow to a size when they can reproduce. This information sheet has been produced by SPC (www.spc.int) in collaboration with the LMMA Network (www.lmmanetwork.org) to assist people working with fishing communities in providing advice on appropriate fisheries management options. Please refer to guide book for an explanation of terms used in this
information sheet. Photos by Matthieu Juncker. # #06 Trevallies (Carangidae) Bluefin trevally (Caranx melampygus) ## **Species & Distribution** The Carangidae family of fish contains approximately 200 different species of trevallies, jacks and scads distributed in all oceans. Many species of medium to large trevallies are found across the Pacific Ocean as far as Hawaii including the island trevally, *Carangoides orthogrammus* (reaching lengths of 75 cm), the bluefin trevally, *Caranx melampygus* (90 cm), the six-banded or bigeye trevally, *Caranx sexfasciatus*, (150 cm) and the giant trevally, *Caranx ignobilis*, (160 cm). ## **Habitats & Feeding** Most trevallies live in a wide range of offshore and inshore habitats including coral reefs. Juveniles are sometimes found in less salty water in river mouths. Many species are active at night feeding up in the water as well as on the sea floor Trevallies are fast-swimming fish that hunt for small fish. Some species dig in the sea floor for worms, shrimps, crabs and other small burrowing animals. Trevallies have small teeth and usually swallow small fish whole. ### Reproduction & Life cycle Trevallies have separate sexes. Many common species appear to reach reproductive maturity at lengths between 35 and 56 per cent of their maximum size. The giant trevally, for example, grows to about 160 cm and 80 kg over a lifespan of about 24 years and reaches reproductive maturity at a length of about 60 to 95 cm when they are between 3 and 5 years old. The smaller bluefin trevally, which grows to 90 cm, reaches sexual maturity at between 30 and 40 cm at an age of about 2 years. Many species travel long distances to breed in large numbers (in spawning aggregations). The areas at which they gather (spawning sites) are often at the outer edge of fringing reefs or near reef passages. These aggregations often occur as waters become warmer and at times are related to the cycle of the moon. During spawning, each female (q) releases many thousands of eggs into the water and these are fertilised by sperm released by males (o'). The fertilised eggs hatch into very small forms (larvae) that drift in the sea for periods often greater than a month. Less than one in every thousand of the small floating forms survives to become a young fish (juvenile). When the drifting forms settle out as juveniles these may enter inshore shallow water and move out to deeper reefs as they grow. Less than one in every hundred juveniles survives the 2 to 5 years that it takes to become a mature adult. ## Fishing methods Trevallies are caught by casting and trolling using artificial lures, jigs and natural baits. Gill nets, cast nets and various traps are also used. Trevallies are also important in sports fishing. Some species have been reported to be responsible for ciguatera poisoning (see the glossary in the Guide to Information Sheets). ### Management measures & Options Authorities in several Pacific Island countries have imposed minimum size limits for trevallies (variously 25 to 30 cm length from the tip of the mouth to the middle of the tail). Although separate minimum sizes have sometimes been used for scads and smaller trevallies, in many cases the particular species of trevally to which the minimum size regulations apply has not been stated. Taking into account the variation in sizes of the different species, these size limits would not allow larger species to reach breeding size. To be effective, size limits should be applied to individual species. Some fisheries authorities have the ability to declare closed fishing seasons but this regulation would be difficult to apply in different regions where trevallies may have different breeding times and areas. Establishing a fixed community-managed reserve where no fishing is allowed (a no-take area) will not protect trevallies because they move from reef to reef and often travel long distances to particular spawning sites. Many local fishers will have some local knowledge of the timing and location of spawning aggregations, however, which makes certain management options possible: - → a ban on fishing during the peak of the spawning season, which may require a number of short closures when trevallies aggregate, perhaps at times related to the cycle of the moon; - → a ban on fishing at known spawning areas or sites, which may be the outer edges of reefs or near reef passages; the small drifting forms produced at such spawning sites are likely to settle on other reefs, including fishing areas, particularly those in down-current places. Other community actions could include: - → a ban on overly efficient fishing methods such as gill nets; - → a ban on small-mesh gill nets; a minimum mesh size may allow smaller fish to escape and grow to a size at which they can reproduce. This information sheet has been produced by SPC (www.spc.int) in collaboration with the LMMA Network (www.lmmanetwork.org) to assist people working with fishing communities in providing advice on appropriate fisheries management options. Please refer to guide book for an explanation of terms used in this information sheet. Photo by Matthieu Juncker. #### **Species & Distribution** The family Mugilidae includes about 80 different species of mullet that are found worldwide in coastal temperate and tropical waters. Mullets have two separate upper (dorsal) fins and small triangular mouths. The flathead or striped mullet, sometimes called the sea mullet, *Mugil cephalus*, appears to be the main one of interest in the South Pacific. The species is olive green on the back and silvery on the sides and belly with about seven dark stripes along the sides. #### **Habitats & Feeding** Adult mullet live in shallow coastal areas, often in schools, over sand, mud or seagrass beds down to depths of about 10 m. They may enter rivers but do not necessarily require freshwater. Mullets are active during the day, when the adults feed on plants and small animals (invertebrates), and suck up sediments on the sea floor. They often form schools to graze on the small plants that grow attached to seagrasses. Mullets are eaten by larger fish such as snappers and barracudas. Mullets have separate sexes and become sexually mature in 3 to 4 years at a size of about 30 cm. They commonly grow to lengths of 60 cm and weights of 4 kg but may reach 100 cm and live for up to 16 years. Each year, mullets move long distances along the coast to offshore waters where they breed in large numbers (in spawning aggregations). During spawning, each female (Q) releases many eggs, often over 1 million, and these are fertilised by sperm released by males (G'). The fertilised eggs hatch into very small forms (larval stages) that drift in the sea. Less than one in every thousand of the small drifting larval forms survives to enter shallow inshore areas 2 to 3 months later. And less than one in every hundred juveniles survives the 3 to 4 years that it takes to grow into a mature adult. #### Fishing methods Mullets are usually caught by using cast nets, gill nets, beach seine nets, ring nets and traps. Fence or maze traps, built at right-angles from shore-lines, are used to guide spawning migrations of mullets into large retaining areas. Mullets are caught in large numbers as they migrate along the coast to breed in spawning aggregations. Fishing in this way is destructive as these breeding fish are responsible for producing small fish, many of which will grow and be available to be caught in future years. This information sheet has been produced by SPC (www.spc.int) in collaboration with the LMMA Network (www.lmmanetwork.org) to assist people working with fishing communities in providing advice on appropriate fisheries management options. Please refer to guide book for an explanation of terms used in this information sheet. Photos by Matthieu Juncker. ## Management measures & Options Mullet fisheries have been managed by the application of several different regulations. As the mullets migrating along a coastline are all adults and often of a similar size, minimum size limits are of little use. The same is true for restricting mesh sizes in the nets and traps to some minimum size (because there are very few smaller fish to pass through the fishing gear unharmed). Catch (bag) limits have also been applied but catches made in large nets and traps are often large and, even if the excess catch is released, fish that are let free may not survive. Establishing community-managed reserves or no-take areas (where no fishing is allowed) is unlikely to benefit migrating species such as mullets and will not protect the fish during their spawning movements along the coast. One of the problems in managing mullet fisheries is that the fish are often caught by many different communities as they migrate along the coast. There is no use in one community protecting the migrating fish if they are going to be caught by the next community along the coast. Ideally, neighbouring communities should work together and agree to enforce the same management measures. The common aim of management would be to allow a sufficient number of mullets to reach the spawning areas and produce small fish, many of which will grow and be available to be caught in future years. Cooperative community management measures could include these actions: - a ban on gill nets and fence traps during the time of spawning migrations of mullets – which may be unreasonable, because mullets are not easily caught by other fishing methods. A more reasonable action may be to: - restrict the number and the size of fence traps and the length of gill nets that are allowed to be used during the mullets' migrations, which can be made more effective by actions to: - ban the use of gill nets and fence traps in particular areas where mullets are most vulnerable. These areas could include narrow passages between the shore and reefs through which the migrating mullets have to pass. # Surgeonfish (Acanthuridae)
Whitespotted surgeonfish (Acanthurus guttatus) Striated surgeonfish (Ctenochaetus striatus) #### **Species & Distribution** Acanthuridae is the fish family of surgeonfish, tangs, and unicornfish. The family includes about 80 species that live in tropical seas. All surgeonfish have one or more sharp spines or blades on each side of the tail. Most surgeonfish are medium sized (15 to 40 cm) although some unicornfish reach lengths of more than 1 m. Several species are important food fish including the widely distributed convict surgeonfish, *Acanthurus triostegus*, as well as the lined surgeonfish, *Acanthurus lineatus*, and the striated surgeonfish, *Ctenochaetus striatus*. #### **Habitats & Feeding** Most surgeonfish are associated with coral reefs and often form very large feeding schools around corals and rocky outcrops in shallow water. The key habitats that are crucial in the life cycle of many surgeonfish are the areas where they gather to breed (the spawning aggregation sites). Surgeonfish have small mouths with a single row of teeth used to scrape plants off corals and rocks. All surgeonfish have separate sexes and most medium sized species have similar life cycles. The convict surgeonfish, used here as an example, commonly reaches lengths of 17 cm (with a maximum length of 27 cm) and lives for more than 4 years. Males and females reach reproductive maturity at different sizes; females are able to reproduce at close to their maximum size, at an age of about 2 years. Most surgeonfish gather in large schools to breed (in spawning aggregations) when waters become warmer and often at times of the full moon. The spawning areas or sites are often at the outer edge of fringing reefs or near reef passages. At the spawning site, each female ($\mathfrak Q$) releases millions of very small eggs into the water and these are fertilised by sperm released by males ($\mathfrak G$). The masses of eggs and sperm appear as white clouds in the water and are fed upon by many fish. The fertilised eggs develop into small forms (larval stages) that drift in the sea for 2 to 3 months. Less than one in every thousand of the small floating forms survives to become a young fish (juvenile) about 3 cm in length. And less than one in every hundred juveniles survives the 2 years or so that it takes to become a mature adult. #### Fishing methods In many Pacific Island coastal fisheries, surgeonfish are the most important group of fish taken for food. They are usually caught by the use of spears, nets and traps. Juveniles often settle out on reefs in massive numbers and these are sometimes caught with fine-mesh nets. Although they are plant eaters, some surgeonfish can be caught on baited hooks. Some surgeonfish in particular areas are believed to be responsible for ciguatera fish poisoning (see Glossary in the Guide to Information Sheets). Many surgeonfish are caught as they gather in large groups to breed (in spawning aggregations). Fishing in this way is destructive as these breeding fish are responsible for producing small fish, many of which will grow and be available to be caught in future years. ## Management measures & Options National fisheries authorities in several Pacific Islands have imposed minimum size limits for surgeonfish (for example, 20 cm length from the tip of the mouth to the middle of the tail) although in most cases the particular species to which the regulation applies has not been stated. To be effective, size limits should be applied to individual species. To ensure that catches of surgeonfish are sustainable it is essential to protect breeding adults. Community-managed fish reserves (notake areas) may allow surgeonfish to grow but, as most species migrate to spawning sites, these would not protect reproducing fish. Many fishing communities will have some local knowledge of the timing and location of spawning aggregations, however, which makes certain management options possible: - → a ban on fishing during the peak of the spawning season, which may require a number of short closures when surgeonfish aggregate. If the species of concern forms spawning aggregations at the time of the full moon, banning fishing for a few days on each side of the full moon may be sufficient; - a ban on fishing at known spawning areas or sites, which may be at the outer edges of fringing reefs or near reef passages. The above actions would give some protection to breeding adults. And, as the small larval forms produced drift in the sea for 2 to 3 months, they are likely to settle on surrounding reefs, including fishing areas, particularly those in down-current places. An additional community action could include banning the use of fine-mesh nets to protect juvenile fish. This information sheet has been produced by SPC (www.spc.int) in collaboration with the LMMA Network (www.lmmanetwork.org) to assist people working with fishing communities in providing advice on appropriate fisheries management options. Please refer to guide book for an explanation of terms used in this information sheet. Photos by Matthieu Juncker. ## Sea cucumbers Sandfish (Holothuria scabra) White teatfish (Holothuria fuscogilva) Black teatfish (Holothuria whitmaei) Curryfish (Stichopus herrmanni) Greenfish (Stichopus chloronotus) Prickly redfish (Thelenota ananas) #### **Species & Distribution** Sea cucumbers have a tough skin and a cucumber-shaped body. Of the thousand or more species distributed throughout the world's oceans, 35 are commercially important in the Asia-Pacific region. Some species are exported in the boiled, smoked and/or dried form known as bêche-de-mer or trepang. Sea cucumbers are classed into three groups based on their value – low, medium or high. The high value group include the white teatfish, Holothuria fuscogilva, the black teatfish, Holothuria whitmaei, the sandfish, Holothuria scabra, and the prickly red fish, Thelenota ananas. Species in the medium and low value groups are changing as demand and prices continue to rise. A booklet on identifying sea cucumber species is available from SPC (www.spc.int). #### **Habitats & Feeding** Sea cucumbers are associated with coral reef ecosystems. Some species are found in shallow lagoons, on seagrass beds and reef flats, while others prefer wave-exposed areas and deep passages. Sea cucumbers move slowly across sandy areas of lagoons feeding on dead plant and animal material (detritus) in the sand. The sand is taken in, the detritus digested and the clean sand passed out behind. For this reason, sea cucumbers are important in cleaning and turning over sand on the sea floor. ### Sea cucumbers (Holothurians) ### Reproduction & Life cycle Most exploited sea cucumbers have separate sexes. Some species, like the sandfish, are relatively fast growing and reach reproductive size within a year or more but take another two years to reach an acceptable market size. Other species grow more slowly and live between 5 to 15 years. Many tropical species reproduce at the start of the warmer months. A few species, such as the black teatfish, spawn during the cooler months. During spawning, females (o) release eggs into the water and these are fertilised by sperm released by males (o'). Successful reproduction depends on large numbers of sea cucumbers being in the same place. Fertilised eggs hatch and develop through very small forms (larval stages) that drift with ocean currents for several weeks; less than one in every thousand of these survives to settle on the sea floor as a young (juvenile) sea cucumber. Sea cucumbers do not move very far from the areas in which they settle and less than one in every hundred juveniles survives to become an adult. #### Fishing methods Sea cucumbers are usually collected by hand at low tide or by free diving. Underwater breathing apparatus, which has also been used, is now illegal in many countries as its use has severely reduced many populations. In some Pacific Islands the guts and reproductive organs, sometimes partially fermented in seawater, are consumed. A slit is made in the body wall of species such as the curryfish, *Stichopus herrmanni*, and the internal organs are removed; the sea cucumber is then returned to the sea where it is believed to regenerate its internal organs. ## Management measures & Options Minimum size limits have been applied by many fishery authorities. As sea cucumbers shrink during processing, minimum sizes are usually given for both live sea cucumbers and the dried product. Minimum sizes for various species are given in the sea cucumber identification cards available from SPC. In some areas, national authorities have declared a moratorium (during which fishing is prohibited) to allow sea cucumber populations to recover. Others have banned the export of particular species. In addition to supporting national regulations, communities could take the following actions: - ban the use of underwater breathing apparatus for collecting sea cucumbers in local fishing areas, which has caused the loss of many sea cucumber populations; - place a ban (or tabu) on collecting sea cucumbers, which may be necessary if stocks have been severely depleted. Bans would have to be in place for several years to allow time for stocks to recover and for adults to breed; - establish rotational harvesting in which different areas are fished in rotation. If the community fishing area is large enough, it could be divided into four or five smaller areas. Sea cucumber collecting could be allowed in a single area during 1 year and then allowed in the other areas in turn during the following years. A large number of smaller areas are required because populations of sea cucumbers increase relatively slowly; - → establish small, community-managed marine reserves or no-take areas. As sea cucumbers do not move much, these reserves could be relatively small (between 0.5 and 3 km²). However, because of the relatively long drifting stage, juveniles are likely to become distributed
in areas some distance from the reserve. This suggests that the following option is ideal; - work with neighbouring communities to establish a network of small sea cucumber reserves along the coast. This information sheet has been produced by SPC (www.spc.int) in collaboration with the LMMA Network (www.lmmanetwork.org) to assist people working with fishing communities in providing advice on appropriate fisheries management options. Please refer to guide book for an explanation of terms used in this information sheet. Photos by Emmanuel Tardy and Eric Clua. #### **Species & Distribution** Tridacnid clams include several species commonly called giant clams, which have various distributions in the Indian and Pacific Oceans. Species range in size from the 15 cm crocus giant clam, *Tridacna crocea*, to the true giant clam, *Tridacna gigas*, which grows to lengths of more than 1 m and reaches weights of more than 200 kg. The elongate giant clam, *Tridacna maxima*, has perhaps the widest distribution among giant clam species in the Pacific, followed by the fluted giant clam, *Tridacna squamosa*. In these species, the colour of the flesh exposed when the shells gape open (the mantle) ranges from browns and purples to greens and yellows. The bear paw giant clam, *Hippopus hippopus*, which grows to about 40 cm, has a mantle which is yellow and grey. #### **Habitats & Feeding** Giant clams are distributed in areas of coral reef, where they lie with the hinge (pointed end) downward. The elongate giant clam, *Tridacna maxima*, and the crocus giant clam, *Tridacna crocea*, appear to be buried in large corals, the latter to the upper edges of its shells. Giant clams feed by filtering food (small drifting plants) from the seawater that passes through their openings (see illustration). They can also obtain food from the very small plant cells (called zooxanthellae) that live within the flesh of the clam. Because the plant cells within the flesh require sunlight, giant clams can only live and grow in water that is clear and shallow. Giant clams begin life as males and mature at about 2 years of age, after which they act as both males (\circ) and females (\circ). Spawning occurs during the warmer months when clams, becoming aware of eggs in the water, release sperm through their outlet openings. About 30 minutes after releasing sperm, an individual clam releases its own eggs, thereby avoiding the eggs being fertilised by its own sperm. The number of eggs released by each individual varies between species, and hundreds of millions are produced by large individuals. The fertilised eggs hatch into very small floating forms (larval stages) that drift in the sea for about 10 days. Less than one in every thousand of the small floating forms survives to become a young clam (juvenile) that settles permanently on the sea floor. And less than one in every hundred juveniles survives to become a mature adult. #### Fishing methods Giant clams may be collected by hand at low tide. They are also taken by free diving, although unfortunately, underwater breathing apparatus is sometimes used. This information sheet has been produced by SPC (www.spc.int) in collaboration with the LMMA Network (www.lmmanetwork.org) to assist people working with fishing communities in providing advice on appropriate fisheries management options. Please refer to guide book for an explanation of terms used in this information sheet. Photos by Matthieu Juncker. ## Management measures & Options The management of giant clam stocks is important as many species have been overfished and have disappeared from many local areas in the Pacific. Many fishery authorities have applied minimum legal size limits with the intention of allowing clams to spawn at least once before capture. The size limits for various species are given in the booklet, Size limits and other coastal fisheries regulations used in the Pacific Islands region, available from SPC (www.spc.int). In some cases, such limits have been applied collectively to all species (for example, 180 mm across the shell for all species). However the limit may be too large for the smaller clams, such as the elongate giant clam, *Tridacna maxima*, which grows to 350 mm and too small for the larger species such as the smooth giant clam, *Tridacna derasa*, which grows to 600 mm. To be effective, size limits should be applied to individual species. Some fishery authorities have banned the commercial harvest of giant clams and have placed catch or bag limits on clams collected for personal use (variously 3 to 10 clams per person per day). The local sale of clams to hotels and restaurants may be banned or strictly controlled. National authorities can play an important role in banning the export of clams and preventing the illegal collection of clams by foreign fishing vessels. Regulations imposed by national authorities can be supplemented or supported by community actions such as: - a ban of the use of underwater breathing apparatus, which would provide some protection for larger clams living in deeper water where they may produce young that settle in shallower water areas; - → establishing reserves (no take areas) in which the taking of giant clams is banned. In these reserves, the presence is needed of large numbers of clams in small areas, so that sperm have a better chance of fertilising eggs released by nearby clams. The time in which the small drifting (larval) stages float in the sea (about 10 days) may result in juvenile clams settling in nearby down-current areas where they can grow and eventually be collected. # Trochus (Tectus niloticus) #### **Species & Distribution** The genus Trochus contains many different species of sea snails commonly called top shells. The main species of interest in the Pacific Islands is *Tectus niloticus* (ex *Trochus niloticus*), a large species (up to 150 mm across the shell base) which has an off-white shell with oblique reddish stripes and an interior layer of thick pearly shell. This species is harvested for its flesh and particularly for its shell which is used to make mother of pearl buttons (the figure on the top of this page shows two trochus shells, one of which has been drilled to produce button blanks). #### **Habitats & Feeding** Juvenile trochus settle in shallow areas among the boulders and rubble on intertidal reef flats. On atoll reefs, adult trochus tend to aggregate along the reef crest while on high islands, they are on reef slopes down to depths of about 20 m. Trochus graze on coral and rocks for very small plants. Trochus have separate sexes and are able to reproduce at about 2 years of age when they have a base diameter of between 50 to 70 mm. They can live for up to 15 years. Spawning occurs throughout the year in warmer areas and during the warmer months in cooler areas. They may form loose spawning aggregations at night within 1 or 2 days of either a full or new moon. During spawning, females (ϱ) release more than 1 million eggs that are fertilised by sperm released by males (σ') . The fertilised eggs hatch to very small forms (the larval stages) that drift with currents in the sea for up to 5 days before settling on a rocky surface. Less than one in every thousand of these survives to become a young trochus (a juvenile). And less than one in every hundred juveniles survives the 2 or more years it takes to become a mature adult. #### Fishing methods Trochus are usually taken by free diving or by wading on the reef crest at low tide. Unfortunately, the use of underwater breathing apparatus has severely reduced many populations of trochus. This information sheet has been produced by SPC (www.spc.int) in collaboration with the LMMA Network (www.lmmanetwork.org) to assist people working with fishing communities in providing advice on appropriate fisheries management options. Please refer to guide book for an explanation of terms used in this information sheet. Photos by Emmanuel Tardy. ## Management measures & Options Minimum and maximum size limits have been imposed in many countries. Minimum size limits allow individuals to spawn at least once before capture. Maximum size limits are justified on the grounds that larger females produce a greater number of eggs and the shells of older individuals are less valuable due to worm infestation. Limits are often set at 80 mm and 120 mm base diameter. Many countries have banned the use of underwater breathing apparatus for collecting trochus. Some countries have banned fishing for trochus for extended periods to allow populations to recover. The minimum population size that has been recommended before fishing can commence is 500 to 600 trochus per hectare (10 000 m²). Management measures that communities could take depend on the state of trochus populations. If they have been depleted, priority actions could include: - → placing and enforcing a total ban on collecting trochus in the local fishing area. Any closure would have to be for a long period to allow time for stocks to recover and for adults to breed; - establishing a permanent marine reserve (no-take area) in an area where there are adult trochus (or where trochus can be introduced). The expectation is that young trochus will be produced and these will settle in nearby areas. Both these actions could be enhanced by the transplantation or introduction of adult trochus from other reef areas where they are not overexploited. If existing stocks of trochus are healthy, or once stocks have recovered, regulations imposed by national authorities can be supported or supplemented by community actions such as: - → establishing rotational harvesting, in which a community fishing area is divided into a number of smaller areas that are fished in rotation each year. If there were four smaller areas, each area would have three years protection from being fished; - → establishing a community quota (or annual bag limit) for an area or region. Fishery authorities
could assist communities by conducting a preseason survey to estimate the number of legal sized trochus in each area. The total number of trochus allowed to be taken could then be set at 30 to 40 per cent of the number of legal sized individuals present. ## Mangrove crab (Scylla serrata) Mangrove or mud crab (Scylla serrata) #### **Species & Distribution** The mangrove or mud crab, Scylla serrata, is found in tropical and sub-tropical inshore areas from Africa to the Pacific Islands. The shell colour varies from a deep, mottled green to very dark brown/purple. Other related species of Scylla may exist in some areas. Male and female crabs can be distinguished from each other by the shape of the flap (abdomen) on the underside of the crab; the flap is narrow in males and much wider in females (see illustration). #### **Habitats & Feeding** The mangrove crab is found in muddy areas associated with mangroves and seagrass beds in the tidal mouths of rivers and sheltered bays. The crabs burrow in the mud and generally have a restricted home range (area over which they move to feed). Mangrove crabs eat small clams, worms, shrimps, barnacles, small fish, plant material and other crabs. They also eat smaller, injured or weak mangrove crabs. Juvenile mangrove crabs are eaten by wading birds and a wide range of fish. Adult crabs have been found in the stomachs of sharks and larger fish. ### Mangrove crab (Scylla serrata) #### **Reproduction & Life cycle** Mangrove crabs reach reproductive maturity in about 2 years and live for about 3 to 4 years when they can weigh up to 3.5 kg with a shell width of up to 24 cm. During mating, the male crab (of) transfers sperm packets (spermatophores) to the underside of a soft-shelled female (Q) where the sperm is stored for many months. The female releases over a million eggs which are fertilised by the stored sperm. The female (now said to be 'berried') carries the eggs for about 12 days. During this period the colour of the eggs changes from bright orange to almost black as the young crabs grow inside. The female moves offshore where the eggs are released and hatch to become small floating forms (the drifting larval stages) about 1 mm long. These float in the sea for about 3 weeks and drift with currents back to inshore areas. The final larval stage settles on the sea floor and turns into a miniature adult or juvenile (about 4 mm wide) within 5 to 12 days. Less than one in every thousand of the small floating forms survives to become a juvenile. And less than one in every hundred juveniles survives to become an adult. #### Fishing methods #### Mangrove crabs are caught by: - → simple hand collection, sometimes with the aid of a hooked stick to remove crabs from their burrows; - → spears used at night with light from torches; - → long-handled scoop nets used among seagrass beds; - → gill nets set at the edge of the mangroves to catch crabs as they move into deeper water; - → baited traps and dillies made of string or wire mesh. ## Management measures & Options Many fisheries management regulations have been applied to mangrove crabs, particularly in places where they are valuable in local markets. These measures include quotas or catch limits (a particular number of crabs per day), limiting the number of traps used and the licensing of those selling crabs. These measures are generally not applicable in community-based fisheries. Measures applicable to all fishing for mangrove crabs include the application of minimum size limits (often between 120 mm and 150 mm shell width), banning the taking of female crabs, banning the taking of berried female crabs, and banning the use of certain fishing methods such as gill nets and spears. Traps are one of the best ways of catching mangrove crabs as they do not damage the caught crabs which can therefore be released if they are females or are too small. In some countries catching mangrove crabs is prohibited during the reproductive period. Applying this measure relies on having knowledge of the timing of the spawning season in the particular area of concern. Reserves (no-take areas) are unlikely to result in an increase in numbers of local populations of mangrove crabs as females move considerable distances offshore to spawn. This and the fact that the larval stages drift for several weeks suggests that juvenile crabs may settle in areas some distance from the reserve and local fishing areas. The most effective measures that a fishing community can take to make fishing for mangrove crabs sustainable may be a combination of: - → banning the taking of female crabs or, at least, berried female crabs; - → banning the taking of all crabs smaller than the national minimum size limit (if there is no national size limit, a minimum size of 140 mm width could be imposed by the community); - protecting the local areas of mangroves and seagrass beds that are essential habitats for mangrove crabs. This information sheet has been produced by SPC (www.spc.int) in collaboration with the LMMA Network (www.lmmanetwork.org) to assist people working with fishing communities in providing advice on appropriate fisheries management options. Please refer to guide book for an explanation of terms used in this information sheet. Photo by Matthieu Juncker. # Spiny lobsters (Palinuridae) Stripe-leg spiny lobster (Panulirus longipes spinosus) Pronghorn spiny lobster (Panulirus penicillatus) Painted spiny lobster (Panulirus versicolor) #### **Species & Distribution** Unlike true lobsters, spiny lobsters do not have large claws and are found in almost all warm seas. Those of interest in Pacific Islands belong to the genus Panulirus. There are six species in the Solomon Islands, but only one, the pronghorn spiny lobster, *Panulirus penicillatus*, ranges out to eastern Polynesia. Except in Papua New Guinea, where the ornate lobster, *Panulirus ornatus* is caught, the main species caught are the pronghorn spiny lobster mixed with smaller quantities of the stripe-leg spiny lobster, *Panulirus longipes spinosus*. The painted spiny lobster, *Panulirus versicolor* is of minor importance. #### **Habitats & Feeding** Spiny lobsters live in crevices on reefs and move out at night to feed. The pronghorn spiny lobster lives in the outer surf zone and moves onto the reef flats to find food. The stripe-leg spiny lobster lives in deeper water. The painted spiny lobster lives among the corals as well as in deeper water on outer reef slopes. The ornate lobster is found from shallow lagoons to continental shelves. Spiny lobsters feed on sea snails, clams, crabs, sea urchins, plants (coralline algae) and dead animals. They are eaten by large fish, sharks and octopuses. The different species of Pacific Island lobsters have similar life cycles. They have separate sexes and, depending on species and location, reach reproductive maturity at around 80 mm carapace length. They become mature adults within 3 to 5 years and live for about 10 years. Many species appear to breed throughout the year, sometimes with a peak in the warmer months of the year. A male (σ) deposits a sperm packet (spermatophore) on the underside of a female (φ). The female releases many thousands of eggs which are fertilised as they pass over the sperm packet. The fertilised eggs are carried for about a month before they hatch into very small floating forms (the larval stages). These drift in the sea for a year or more, and less than one in every thousand survives to settle on the sea floor as a young lobster (juvenile). And less than one in every hundred juveniles survives to become a mature adult. #### Fishing methods In most Pacific Islands, the main fishing method used is the collection of lobsters by hand or by free diving at night with underwater lights. Some lobsters are taken by the use of spears and, unfortunately, underwater breathing apparatus is sometimes used. Many large-scale operations to catch lobsters in Pacific Islands have failed because the main species are generally present in low abundance and, except for the Hawaiian spiny lobster, do not enter traps or pots readily. It is important that fishery authorities reserve lobster fishing for local people selling to local markets. This information sheet has been produced by SPC (www.spc.int) in collaboration with the LMMA Network (www.lmmanetwork.org) to assist people working with fishing communities in providing advice on appropriate fisheries management options. Please refer to guide book for an explanation of terms used in this information sheet. Photos by Matthieu Juncker and Eric Clua. ## Management measures & Options Fishery authorities have applied minimum size limits on various species and these are given in the booklet Size limits and other coastal fisheries regulations used in the Pacific Islands region, available from SPC (www.spc.int). National size limits are particularly useful if lobster catches can be checked at relatively few market places. Some authorities have banned the taking of egg-bearing females and soft-shelled lobsters. Some have applied catch or bag limits (for example, 10 lobsters per person per day), banned the use of underwater breathing apparatus, and banned the export of lobsters. Management of lobsters by individual communities is often difficult because the small drifting (larval) stages float in the sea for a very long time (often, over a year) before settling on reefs as juveniles. Therefore, the young produced by adult lobsters in a community's fishing area may settle on reefs some distance away. If an atoll or a small island community takes actions to manage its lobster fishery, these are likely to benefit local fishers. If only one of many communities on a long coastline takes management actions, lobster numbers may still decrease if other, nearby communities have depleted their own lobster numbers. In this case, the best solution is for many neighbouring communities to work together and agree to the same
management measures. In addition to supporting national regulations, communities could take the following actions: - restrict the total community catch of lobsters to a sustainable level. A sustainable catch may be as low as 20 kg of lobster per km of reef-face per year; - rotate the catching of lobsters on different areas of reef. Each area could be fished for 1 year and then left unfished for a number of years; - ban the taking of small lobster (enforce national minimum size limits); - → ban the use of underwater breathing apparatus; - ban the use of spears. Collecting lobsters by hand allows fishermen to avoid small lobsters and live lobsters are more marketable than dead ones; - → ban the taking of female lobsters carrying eggs. ## Coconut crab (Birgus latro) Coconut crab (Birgus latro) #### **Species & Distribution** The coconut crab, Birgus latro, is a crustacean related to hermit crabs. The juveniles live in sea-snail (gastropod) shells but the adults live without shells and grow to large sizes on land. The coconut crab is one the largest of all crabs and reaches weights of over 4 kg (with some reports of weights up to 14 kg). The adults have massive crushing claws and long legs which enable them to climb trees. The colour of adults varies from light violet through to deep purple to brown. The coconut crab is distributed in tropical islands from the Indian Ocean to French Polynesia in the Pacific Ocean. Its vulnerability to animals such as dogs and pigs as well as the destruction of its coastal habitats have probably accounted for its disappearance in many islands and atolls. #### **Habitats & Feeding** Adult coconut crabs live alone in underground burrows and rock crevices in coastal forest regions and some have been found up to 6 km from the sea. Adults cannot swim and will drown in seawater. Coconut crabs generally remain hidden during the day and come out to look for food at night. They eat other crabs, dead animals, and will sometimes raid rubbish bins for human food scraps. They eat rotting leaves as well as *Pandanus* fruit and coconuts that have fallen to the ground. They are capable of removing the husk of a coconut with their large claws and piercing its soft germination eye with one of their legs. Coconut crabs have separate sexes. During mating, the male (σ') transfers sperm packets (spermatophores) to the underside of a soft-shelled female (φ). A few weeks later, the female releases her eggs. These are fertilised as they pass over the spermatophores and form a spongy, orange, egg mass, which is carried underneath her body for a few months. The female moves to the shore-line and releases the fertilised eggs into the ocean at high tide. These hatch into small forms (the larval stages) which drift in the ocean for about a month. Less than one in every thousand survives to settle on shore and enter a suitable sea-snail shell. As they change into juveniles, they lose the need for protective shells and move further inland as they grow. Less than one in every hundred survives to become an adult. As in all crustaceans, coconut crabs cast off their hard covering at intervals in order to grow. When the old shell is cast off, it takes about 30 days for a new shell to harden and, as the crab is vulnerable during this time, it stays hidden for protection. Coconut crabs are capable of reproducing at approximately 5 years of age and can live for over 30 years. #### Fishing methods Coconut crabs are highly prized as food and their ease of capture has resulted in their disappearance in many island countries. Local people may set baits of split coconuts pinned to the ground and check the baits at night with a torch. Although farming is often suggested as a way of producing coconut crabs for the market, their complex life cycle and slow growth make this a difficult undertaking. ## Management measures & Options National fisheries authorities have applied catch limits, bans on taking females bearing eggs and size limits. These rules are set out in the booklet, Size limits and other coastal fisheries regulations used in the Pacific Islands region, available from SPC. These national regulations are effective if catches of coconut crabs can be checked at relatively few market places. However, as fishing is usually done at night and the catch is disposed of through scattered outlets including local markets, hotels and restaurants, these regulations are difficult to enforce. Banning the capture of crabs during the breeding season is not practical as females carry their eggs for an extended time period. In some countries it has been made illegal for restaurants to buy coconut crabs. Although commendable, this has deprived local people of a source of income. However, it is possible for communities to make up for this loss through ecotourism. Community actions could include: - → setting up a coconut crab reserve in an area with suitable habitats, which would have to be fenced to exclude livestock and have access to the sea to allow crabs to reproduce. Initially, it may be necessary to transplant coconut crabs into the reserve from nearby areas; - → allowing fee-paying tourists to take guided evening tours to view the crabs in their natural habitat. National tourism organisations and hotels may assist in attracting tourists; - restricting the capture and sale of large coconut crabs from areas outside the reserve to a reasonable bag limit and enforcing national regulations, including minimum size limits. This information sheet has been produced by SPC (www.spc.int) in collaboration with the LMMA Network (www.lmmanetwork.org) to assist people working with fishing communities in providing advice on appropriate fisheries management options. Please refer to guide book for an explanation of terms used in this information sheet. Photos by Matthieu Juncker. ### #15 Octopuses Big blue octopus (Octopus cyanea) #### **Species & Distribution** Octopuses are related to squids and clams and have eight arms with suckers, soft saclike bodies, and strong, beaklike jaws. At least 100 species of octopuses are distributed in seas around the world. Although octopuses live on the sea floor, they can swim quickly by forcing jets of water through specialised funnels. They can also change colour and release clouds of black ink to confuse predators. All octopuses are capable of biting with their strong beaks, but only one group, the blue-ringed octopus, is known to be dangerous to humans. #### **Habitats & Feeding** Reef octopuses live under ledges or in holes in the coral reef. These nests can often be recognised by the rubble and the remains of their food, including empty shells, found near the entrances. Most feed during the night, but the big blue octopus feeds during the day. They eat various small clams, crabs, shrimps, lobsters, worms and a variety of fish. They are eaten by moray eels, sharks, stingrays and some large fish. Octopuses have separate sexes. During breeding, the male (σ) uses one of its arms to place packets of sperm under the body covering (mantle) of the female (φ). The female releases hundreds of eggs, which are fertilised by the stored sperm. The female lays the fertilised eggs in bunches under a ledge or within a nest on the reef. She protects the eggs and does not go hunting for a period of several weeks until they hatch. The newly hatched forms (the drifting larval stages) look like small adults and swim in the water for about a month. Only a few, perhaps one in every hundred, survive to settle to the sea floor as juveniles. They grow to become reproducing adults in less than five months and have a lifespan of only 1 or 2 years. #### Fishing methods Octopuses are fished locally throughout the Pacific Islands using a variety of fishing methods including lures, baited lines and spears as well as by hand. Some fishing methods result in considerable destruction of corals as the octopuses are removed from their nests. In some countries, traditional lures made of cowry shells are used to attract and catch octopuses. This information sheet has been produced by SPC (www.spc.int) in collaboration with the LMMA Network (www.lmmanetwork.org) to assist people working with fishing communities in providing advice on appropriate fisheries management options. Please refer to guide book for an explanation of terms used in this information sheet. Photos by Matthieu Juncker. ### Management measures & Options Not many fisheries management regulations have been applied to octopuses although their numbers have decreased on many reefs. Minimum legal size limits, intended to allow individuals to spawn at least once before capture, are of little use in octopus fisheries. Many of the commonly used fishing methods damage the octopuses and any under-sized individuals released after capture would be unlikely to survive. Possible community management measures include banning the use of fishing methods that result in the destruction of surrounding corals. Regulations imposed by national authorities can be supported or supplemented by community actions such as: - establish reserves (no-take areas) in which the catching of octopuses is banned. Adult octopuses within the reserve will increase in number and be responsible for repopulating nearby areas, particularly those that are down-current, where they can be caught; - → establish rotational harvesting in which the fishing area is divided into smaller sections which are fished in rotation, often 1 year at a time. A community could, for example, divide its reef fishing area into two or three smaller areas. The community would then allow octopuses to be caught in one area during 1 year and then to be caught in the other areas in turn during the following years. Because octopuses grow very quickly, those in areas that are protected even for a short time, say 1 to 2 years, are likely to increase in number and reach a size at which they can reproduce. ## Green snail
(Turbo marmoratus) Green snail (Turbo marmoratus) #### **Species & Distribution** The green snail or turban, Turbo marmoratus, is a large sea snail that grows up to 2 kg. It has a heavy shell and a large lid or operculum (sometimes called a "cat's eye"), which can close off the opening of the shell when the snail is disturbed or attacked. Green snails are harvested for their meat and their pearly shells, which are sold to processing factories for making buttons, jewellery and pearl inlays. #### **Habitats & Feeding** Green snails prefer the surf zones and reef slopes on coral reefs. Juvenile green snails hide in crevices and holes. Adults move around at night to feed on plants (red and green algae). They are eaten by many animals including crabs, mantis shrimps, other sea snails, octopuses and large fish. Green snails have separate sexes and are able to reproduce at a shell width of about 130 to 150 mm and an age of about 4 years. In cooler areas, green snails appear to breed in the summer months but, in warmer areas, they breed throughout the year. During reproduction, each female (Q) releases millions of eggs into the sea and these are fertilised by sperm released by the males (O'). Although heavier than seawater, the eggs may be carried by sea currents over considerable distances. The fertilised eggs develop into very small forms (the larval stages) that drift in the sea. Less than one in every thousand survives to settle on the sea floor as a shelled juvenile within 3 to 5 days. And less than one in every hundred juveniles survives to become an adult. #### Fishing methods Green snails are usually taken by free diving or snorkelling and wading on the reefs at low tide. Unfortunately, the use of underwater breathing apparatus has been responsible for removing nearly all green snails in many areas. Fisheries for green snails have collapsed in several Melanesian countries. ## Management measures & Options Many fisheries authorities have applied minimum size limits (often within the range 130 to 150 mm shell width) with the intention of allowing individuals to breed at least once before capture. The use of underwater breathing apparatus for collecting green snails has been banned in many countries. This measure may provide some protection for larger reproducing snails living in deeper water and these may breed and repopulate shallower areas. These regulations are of little use in many areas where green snails have disappeared due to heavy fishing. Some countries have banned fishing for green snails for periods of up to 15 years to allow populations to recover. Due to the high value of green snails, many communities have difficulty protecting green snails from commercial operators. Management measures that communities could take depend on the state of local green snail populations. If green snails have been severely depleted, possible priority actions could include: - placing and enforcing a ban on the collecting of green snails in the local fishing area. Any closure would have to be for several years to allow time for stocks to recover and for adults to breed; - → establishing a permanent marine reserve (no-take area) in an area where there are adult green snails (or where green snails can be introduced). The expectation is that adults in the reserve will grow and reproduce. Due to the very short time that small green snails (the larvae) drift in the sea, juveniles may settle both within the reserve and in nearby down-current areas. If existing stocks of green snails are healthy, or once stocks have recovered, the following management measures can be taken to ensure that collecting green snails is sustainable; - → establishing rotational harvesting, in which a community fishing area is divided into a number of smaller areas that are fished in rotation. If there were five smaller areas, each area would have four years protection from being fished and this may allow green snail stocks to rebuild and reproduce; - → establishing a community quota (or annual bag limit). Fisheries authorities could assist communities by conducting a preseason survey to estimate the number of green snails over a minimum size in each area. The community quota (the total number of green snails allowed to be taken) could then be set at 40 per cent of the number of legal sized snails present; if there is no national minimum size, a community could apply a minimum size of 140 mm shell width. This information sheet has been produced by SPC (www.spc.int) in collaboration with the LMMA Network (www.lmmanetwork.org) to assist people working with fishing communities in providing advice on appropriate fisheries management options. Please refer to guide book for an explanation of terms used in this information sheet. Photos by Kim Friedman and Antoine Teitelbaum. These guide and information sheets have been produced by SPC (www.spc.int) in collaboration with the LMMA Network (www.lmmanetwork.org) to assist people working with fishing communities in providing advice on appropriate fisheries management options. Telephone: +687 26 20 00 Facsimile: +687 26 38 18 E-mail: cfpinfo@spc.int Secretariat of the Pacific Community BP D5 - 98848 Nouméa Cedex - New Caledonia © Copyright SPC, 2011 be Information 2011