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Our oceans are rapidly warming

OHC Trend : 1993-2015

Cheng et al (2015) Science Advances



Increasing strength and frequency of extreme events

Marine heatwave intensities forecast to increase by 20-100%

Annual heatwave days could increase from 40 to 80-170 days
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Increased climate variability
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Ocean warming has caused significant biological change in our oceans




Temperature can have direct and indirect effects on fish




Three universal impacts of climate change

1) Shifts in species’ distributions
2) Reduced body size
3) Seasonal shifts in the timing of life history events (their ‘phenology’)

All these climate-induced changes have significant impact on fisheries



The ecological niche plays a critical role in shaping a species’ distribution

Niche: “total range of conditions under which the individual (or population) lives and replaces itself”

Fitness
Environmental gradient y

Environmental gradient x Environmental gradient x

Hutchinson (1957)



When the environment changes, the niche moves

Range
expansion

Range
expansion

Range
contraction

Range
deepening

EY

-

Historic range
Current range



Warming drives distributional changes

Species are generally shifting to higher latitudes (or greater depths) as waters warm

Species inhabiting more rapidly warming areas are more likely to experience a range shift
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Climate-driven range shifts can be rapid
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Shifting distributions of tuna in the western and central Pacific

Tuna distributions (skipjack, yellowfin, bigeye) are highly sensitive to SST, leading to large
spatio-temporal variation in catch

2015

Purse-seine effort SS8T=285°C

Lehodey et al (1997) Nature; Bell et al (2021) Nature Sustainability



The impacts of El Nino—Southern Oscillation on Pacific fishes

PhD candidate Juan Wang

Jed Macdonald, Steve Swearer
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ENSO drives changes in vertical distribution of tuna

Both species deepen during La Nifia and shoal during El Nifo
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Projected shifts in distributions of fished species

Climate change is causing shifts in the distribution of shared stocks between neighboring EEZs

Implications for international fisheries governance
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Shifting/ expanding/ contracting species

Distributional changes may offer new fishing opportunities, or could result in fishing declines

‘Winners’

‘Losers’




Management requirements when fish are redistributing

What should managers do to be both
proactive and reactive?

'FISH and FISHERIES

FISH and FISHERIES, 2011, 12, 461-469
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Management requirements when fish are redistributing

Properly define stocks in the first place (tagging, genetics etc.)
Monitor spatial distribution of stocks (inc. depth!)
Be prepared to re-evaluate stock identification
Be prepared to re-evaluate stock area

Be prepared to update stock models



Warming is driving body size change in fishes

")

Check for
updates

Warming-induced reductions in body size are greater
in aquatic than terrestrial species
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Warming leads to reduced fish body size

Temperature size rule (TSR) describes the observed phenomena of increased juvenile growth,
earlier maturation, reduced lifespan, smaller adult size at higher temperatures
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The mechanism driving ‘shrinking fish” is hotly debated!

1. Larger body sizes have increased oxygen demand, but lower oxygen in warmer water
means larger fish basically find it ‘hard to breath’?

2. Biological rates are faster at warmer temperatures, so fish develop into adults faster
(and thus at smaller size)?

3. Warming-induced changes in reproductive allocation decisions? etc.



Bigger fish produce disproportionately more offspring
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Smaller fish have higher mortality risk




What if you do not have a good understanding of body size changes through time?




Measuring and
analysing fish growth
using otoliths




w does climate affect the growth of New Zealand fish?
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Morrongiello et al. (2021) Global Change Biology




Near-shore (<100m)

Deep-water (200-800m)

Morrongiello et al. (2021) Global Change Biology




Predicted otolith growth (um)

Considerable inter-annual growth variation in 3 of 4 species
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Otoliths allowed us to recreate 40-60 years of growth variation

What is driving variation in growth?

Morrongiello et al. (2021) Global Change Biology



Drivers of annual growth variation

Near-shore species: regional climate
Deep-water species: basin-wide climate, modulated by fishing
All species: fishing activity

Near-shore deep-water
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Morrongiello et al. (2021) Global Change Biology



We generally assume maturity schedules are fixed

We perform gonad analyses and characterise fish as immature/mature

Use this, with size and age data, to produce ogive
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But maturity schedules can be driven by environmental change!

Need a lot of samples to detect these changes
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What to do about fish size changes?

Monitor size and age structure of catch (through time and/or space)

Consider targeted studies (e.g. otolith growth) to assess sensitivity of stock to current and
future warming

Don’t assume that life history parameters (e.g. age or size at maturity) are stationary. Try to
monitor these periodically (gonads or new maturity proxies)

Be prepared to update stock models with new knowledge

Promote preservation of big fish



Remember: fishing selects against large, old fish too
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Altered phenology

Rapid warming can alter cues used by species to stimulate reproduction and developmental rates

Match-mismatch hypothesis: recruitment greatest when newly hatched larvae encounter a food-rich
environment

Advanced phenology can increase likelihood of mismatches and recruitment failure

Frequency
A Larvae Larval food
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Cushing (1990) Advances in Marine Biology Time



Recruitment can be really hard to predict!
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Barramundi- simple recruitment model

-

Crook et al (2022) Ecological Applications



Barramundi year class strength can be predicted by monsoon intensity
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Fisheries models can be simple or complex

Fisheries models can be simple, such as describing relationship between fish and habitat

They can be complex, capturing ecosystem relationships and multiple users
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Key messages

Monitor your stock and keep an eye out for changes!
Distributional changes can have significant implications for fishery productivity and food security
Warming-induced declines in size can impact on stock productivity and viability
Climate change is impacting on recruitment patterns and phenology, but this is hard to assess

Understand how warming will affect your stock (be prepared). This could be an empirical
assessment, or predictions based on existing knowledge

Latitude




Thank you

John.morrongiello@unimelb.edu.au
www.morrongiellolab.com
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