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1. In troduc t ion 

The Solomon Islands, consisting of a main group archipelago (MGA) and several outly­
ing islands or atolls (Figure 1), is the location of the largest locally-based tuna fishery 
in the Pacific Islands region. In recent years, the fishery has produced 30,000-40,000 t 
of tuna, the majority of which is skipjack (Katsuwonus pelamis). 

Two main fishing techniques are employed, pole-and-line and purse seine. The 
pole-and-line fleet, consisting of thirty 59-GRT Japanese-type vessels, has unrestricted 
access throughout the Solomon Islands Exclusive Economic Zone (EEZ) outside of three 
miles from land, but most vessels usually fish within, or just outside, the MGA baseline 
(Figure 2), where they are in close proximity to productive baiting grounds. The purse 
seine fleet, consisting of one single seiner and three group seiners, is excluded from waters 
within the MGA baseline, and bases its operations around setting on fish aggregation 
devices (FADs) moored just outside the MGA baseline (Figure 3). Pole-and line vessels 
may also fish on these FADs and on others that are moored inside the MGA baseline, 
but their operations are much less FAD-dependent than those of the purse seiners. 

To date, the pole-and-line fleet has produced in excess of 80% of the annual Solomon 
Islands skipjack catch (Table 1). However, purse seine catch rates, which averaged 27 t 
of skipjack per day in 1991 (SPC 1992) are much higher than those of pole-and-line ves­
sels (5 t of skipjack per day in 1991). Also, the purse seiners catch substantial quantities 
of yellowfin (13 t per day in 1991), which are not generally taken in significant quantities 
by the pole-and-line fleet. On the basis of these catch rates, there is a strong economic 
incentive to expand purse seining. However, the Solomon Islands Government is con­
cerned that a major increase in purse seine catch may negatively impact catch rates, 
and profitability, of the pole-and-line fleet, which although less efficient economically, 
is a major source of youth employment in the Solomon Islands and provides a superior 
product for the local cannery. In addition to this fishery interaction question, the overall 
potential of the skipjack fishery, while clearly substantial (Argue and Kearney 1982), 
has not yet been determined with precision. 

To address these questions, the South Pacific Commission and the Solomon Islands 
Ministry of Natural Resources undertook a tagging programme in the Solomon Islands 
during 1989-1990. Six tagging cruises were undertaken over a 12 month period, releasing 
7,730 tagged skipjack. From these releases, 914 recoveries have been recorded. The 



experimental design of the tag release programme called for tagged skipjack, of the size 
range normally found in commercial catches ( 40-60 cm fork length), to be released 
throughout the major area of operation of the fishery. In particular, tagged skipjack 
were to be released both in areas fished by purse seiners (in the vicinity of FADs) 
and in areas fished by pole-and-liners (mainly within the MGA baseline). Four cruises 
were undertaken on pole-and-line vessels that were fishing commercially, therefore most 
releases were made to the south of New Georgia Island, which was the most productive 
fishing ground during these cruises (Figure 4). Two additional cruises were undertaken, 
using a chartered tagging research vessel, in order to release tagged skipjack in as many 
spatial s t rata as possible. 

The principal questions to be posed in analysing the results of this tagging pro­
gramme are: 

1. What is the effect of the current purse seine fishery on the pole-and-line fishery? 

2. What would be the effect of increased purse seine catches of skipjack on pole-and-
line catch rates? 

3. To what extent would further deployment of FADs enhance the operation of the 
fishery, and is it possible to recommend any particular spatial configuration of FADs 
that is likely to be more efficient? 

4. Can a biologically reasonable development target, in terms of total catch, for the 
Solomon Islands skipjack fishery be defined, and if so, what is it? 

In attempting to answer these questions, we developed a population dynamics 
model to describe skipjack natural death, harvest and movement, and have conducted 
some fits of the model to a subset of the tagging data. The model, described in detail 
below, explicitly incorporates the effects of FADs on skipjack movement. This spatial 
structure was a necessary inclusion to the model because it was clear from preliminary 
analyses (SPC, 1990) that the locations of tag releases in relation to the locations of 
the FADs was a key determinant in the pat tern of tag recoveries by gear type. The 
objectives of this report are to provide a detailed account of the theory and methods 
used in implementing this model, to give preliminary results of fitting the model to the 
tagging data and to outline a strategy for using the model to answer the four questions 
posed above. 
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2. D e s c r i p t i o n of M o d e l 

2.1 Basic Structure 

The model deals with three basic processes: natural death, harvest, and movement in 
two horizontal dimensions. Because it is designed for tagged fish, recruitment is not an 
issue. The model also does not need to deal with growth or age, because we assume that 
the fish do not change their characteristics of mortality, vulnerability to the fishery, or 
movement once they reach size or age of recruitment to the fishery. 

Most of the complexity of the model resides in the way it deals with movement. It 
is an advection/diffusion model on a discrete spatial grid of half degree squares. Thus 
the grid spacing is approximately 30 nautical miles in both spatial dimensions. The 
geographic boundaries (any of Figures 1-4) are such that we have an 18 x 22 spatial 
grid, and the population of tagged fish at large is represented by a corresponding 18 x 22 
matrix, P . Time is discretized into one month intervals. The spacing of t ime and spatial 
intervals reflects the resolution of the available data, both for tag recovery times and 
positions and for distribution of fishing effort — both necessary inputs to the model. 

The basic movement parameter is diffusivity, D, which is translated into two trans­
fer coefficients for each grid cell boundary, one in each direction. This means that there 
are four matrices of movement coefficients, m^, m^, m - *, m " - which govern movement 
in north, south, east, and west directions respectively. The relationship of elements of 
the population matr ix and the movement coefficient matrices to grid cells is organized 
as follows: 
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The movement coefficients are the proportion of the fish in one cell that move to a 
neighboring cell per unit time. For example, the instantaneous ra te of movement from 
cell (i,j) to (i,j + 1) would be given by mJ^jPij. 

3 



Adding up the effects of movement, and mortality, the difference equation for pro­
jecting the population of tagged fish in cell (i,j) at time t by one time step, At, is given 
by 

Pi,j,t+At = Pi,j,t + 

At [m]+ltjPi+ltjtt + m^jPi-uj + mZJ-1Pi,j-i,t + m~j+1Pitj+ht 

- (m}tj + ml
itj + m £ + m r . + M + ]T) q^i^t)Pi,j,t 

k 

where M in the natural mortality, qk is the catchability for the k-th. gear-type, and 
ei,j,k,t is the corresponding effort of gear k in the cell at t ime t. We have two gear 
types in the present implementation of the model, purse-seine and pole-and-line. These 
account for almost all ( > 99%) of the tag returns. 

The edges of the grid must be handled specially. In this model, we have closed 
borders, which means that no fish can migrate into or out of our model area. In effect, 
the movement coefficients of the outer boundary are defined to be zero, that is, for our 
18 by 22 grid: 

lsj = 0 V ; m l , j > m 0 , j ' m l 9 , i ' m 

mi7l> m Co' mC23> mt\22 = ° V * 
(2) 

However, we have a trick for effectively opening the borders by setting the surface area 
of the edge cells to artificially high values (see next section). 

2.2 Determining Movement Coefficients 

In the absence of local conditions that would modify movement behavior, it is assumed 
that movement would be purely diffusive. In this case all movement coefficients in the 
model would be assigned a common value, which would be a diffusion coefficient, D. 
However, the presence of FADs or islands modifies the values that are assigned to local 
movement coefficients as follows: 

mlj = D • <l>i,M-ulai,J 

mlj=D-<l>i,jKi/ai,J 

m £ = D • fcjb^/aij 

m~j = D-(j)ijb™j_1/aij 

where <f>, bP, bm, and a are elements of matrix, <I>, describing effects of FADs, and 
matrices, b^ , b m , and a, describing various effects of islands. 

a. Effect of FADs 

The effect of FADs is, of course, the central thrust of the model. Other than the well 
known and well utilized observation that tuna congregate in the neighborhood of FADs, 
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little is known about how FADs might modify movement behavior. Observations of 
course tracks of individual tunas (Holland et al., 1990) in some cases show obvious 
attraction to FADs, but it is not obvious how to translate these observations into nu­
merical parameters of movement. In our model, we have assumed that FADs in a grid 
cell inhibit the movement of fish out of that cell. This is accomplished by reducing the 
exit coefficients of cells by factors which are the corresponding elements of $ , given by 

fa = i - f
 SH ; o < 5 < i , / f c > o . (3) 

Jh + Ji,j 

where fcj is the number of FADs in cell (i,j). The theoretical justification for Equation 3 
lies not in its particular mathematical form, but in the fact that it behaves as we would 
expect. Thus in cells with no FADS there is no effect (<f> = 1), and with increasing 
number of FADs, the effect increases (<f> decreases) and approaches a saturat ion level 
(<f> —*• 1—s) for cells with a large number of FADs. The parameter, fh, is the number of 
FADs in a cell that gives half the saturation effect. 

b. Effect of Obstruction by Islands 

The other condition that modifies movement coefficients is the presence of islands. There 
are two effects. One is the obstruction of boundaries between cells, and the other the 
obstruction of water area within cells. To prevent the situation of cells being cut into 
two isolated parts , we shifted some of the islands slightly (in the model!), the da ta 
resolution being insufficient to assign effort and tag returns to sub-areas within cells. In 
these cases, we guessed which side of the island most of the data originated from and 
shifted the island so that all the water area in the cell was on that side. We estimated 
the proportion of each boundary and the proportion of the area of each cell that is open 
(i.e, not obscured by islands). These da ta make up three matrices, a, the proportion of 
water area in cells, b m , the proportion of each meridional (longitudinal) boundary open 
for east-west movement, and b^ , the proportion of each parallel (latitudinal) boundary 
open for north-south movement. The indexing of elements of these matrices in relation 
to the grid cells is as follows: 

* ? „ • 

The trick alluded to above for opening the borders of the model area involves 
setting the edge elements of a (i.e., a^., ais,., a.,i, a.,22) to values much greater than 
unity (normally these numbers are proportions, ie., between 0 and 1). This has the 
effect of making the edge cells into population sinks because their surface areas are in 
effect much larger than the interior cells. 
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The obscuring of area in cells by islands has an additional effect, not on movement, 
but on fishing mortality. A given amount of effort is more effective if the fish and 
the gear are crowded into a smaller area. In the model, we handle this by modifying 
(enhancing) the effort by the reciprocal of the area factor, that is, 

ei,j,k,t = ei,j,k,t/ai,j V hj,k,t 

where e? • . , is the raw effort. 

2.3 Simulation Method 

To run the model we generate a solution over time to Equation 1 for each tag set and 
for all cells in the grid starting from known initial conditions (given by tag release 
information). We defined a tag set as the releases within a calendar month and within 
one half-degree cell. The number released is multiplied by an initial tag survival factor 
to get the effective number of releases. This factor includes the effect of non-reporting as 
well as immediate tagging mortality and tag shedding. To generated a solution, we use 
an alternating direction implicit method (Press, et al. 1988, pg 666). This is essentially 
the same method developed by Sibert and Fournier (pers. comm.) for a large scale 
tuna movement model. It enables us to get stable solutions with rather large diffusion 
turnover of several hundred percent per time step in the grid cells. 

2.4 Method for Fitting Model to Data 

We use a strategy similar to that of Hilborn (1990), Deriso et al. (1991) and Sibert 
and Fournier (pers. comm.) to fit the model to tag data. In our case, we maximize a 
likelihood function which is the probability of observing what we did observe (the real 
data) , under the assumption that the returns predicted from the model are the real 
expected values for the returns. Under that assumption, the probability of any one tag 
being returned from a particular time-area s t ra tum is the predicted number of returns 
in that s t ra tum divided by the effective number of releases in the particular tag set, and 
the probability of not being returned is the predicted number of non-returns divided by 
that same number of releases. Combining the probabilities of all the actual tag returns 
as well as the probabilities for all the tags that were not returned, the likelihood of the 
observed data, r, given the predicted data, p , is the following product of multinomial 
functions: 

where 

Ra = effective number of releases in tag set s 

rij3 = observed tag returns in s t ra tum, i and tag set, s 

P%,a — predicted tag returns in s t ra tum, i and tag set, s 
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Since the predicted returns, p , depend on the parameter values that go into the 
model, we can search for the set of parameter values that maximize the likelihood func­
tion. Actually, we find the minimum of the negative log of the likelihood function, which 
amounts to the same thing. We make use of programming package, AUTODIF, which is 
designed for non-linear function minimization using an iterative quasi-Newton routine 
and a built-in system for automatically finding the required partial derivatives of the 
function being minimized (Anonymous, 1991). In estimating six parameters consisting 
of diffusivity, two FAD stickiness parameters, natural mortality and two catchabilities, 
the fitting procedure tends to converge in 10 to 100 iterations depending on how close 
the original parameter guesses are to the final estimates. With simulated da ta sets the 
final estimates are close to the parameters used in the simulation to within four or five 
significant figures. 

3 . Pre l iminary R e s u l t s and D i s c u s s i o n 

So far we have fitted the model to the two tag sets (releases in one month and one cell) 
that had the highest number of releases, 1,938 and 1,817. The remaining sets range 
down from 637 to 1 release. We found that the model converged in almost all cases 
except where there were too few subiterations or some parameters were not constrained 
enough, resulting in negative populations in the model. Table 2 gives information on 
fits that did converge. 

The model "wanted" to estimate a rather high diffusivity. In the first trial in 
Table 2, with only two subiterations per time step, the final diffusivity estimate was 
pushed against the upper constraint. To relax the constraint and let the fitting proce­
dure find it 's natural diffusivity level, we had to increase the number of subiterations 
to avoid negative populations in the model. With four subiterations, the final estimate 
stabilized at approximately 3 grid cell areas per month (2700 square nautical miles per 
month) . This corresponds to a monthly turnover in a cell of several hundred percent 
per month due to diffusive movement. The reason for this high estimate is the fact that 
the model has to accommodate re turns that were made from several cells away from 
the release cells within the first month or so. 

Some of the trials were repeated with different starting values for the parameters or 
restarted at the final converged values. In most cases these repeat trials reconverged to 
essentially the same point, except for the trial with three subiterations, which wandered 
into negative population territory when it was restarted. That is why we advanced to 
four subiterations. 

In moving up to four subiterations the measure of fit got worse rather than better. 
We are not sure why this is. The trial conditions listed in Table 2 are not the whole 
story because there was some fixing of bugs in the computer program between one trial 
and another. We think these were minor bugs, but they might have had subtle effects. 
This is a primary reason why the results presented here are preliminary. The differences 
among the last three trials, however, are strictly as listed in the table. 
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Estimation of the FAD stickiness parameters, s, and fh, is the central thrust of 
this work. We hoped the model would be sensitive to those parameters, and it turns 
out that it is. Convergence was achieved in some cases with starting values of these 
parameters rather far from the final estimates — starting close to 0 or 1 for s or as high 
as 20 for fh- Throughout the change in fitting conditions (Table 2) the FAD parameter 
estimates persisted with s roughly in the middle of its possible range (0-1) and with fh 
between 1.3 and 1.9. Trial 7, which was identical with Trial 6 in every respect except 
that the FAD effect was disabled, gave a significantly worse fit. 

xf2df] = 2(604.49 - 595.66) = 17.66 

probability = .00015 

Thus it appears that there is some effect of FADs implicit in the data and that the 
model captures at least part of that effect. According to the estimated values of the 
FAD parameters, the tendency of skipjack to exit a cell can be reduced by more than 
half with five or six FADs in the cell, but the effect of adding more FADs than that is 
greatly diminished (Figure 5). 

The remaining parameter estimates, natural mortality, and ca'tchabilities, contain 
no surprises. Attrition rates as high or higher that the estimates of M in Table 2 are 
routinely found for skipjack from simpler models lacking fish movement. Our estimates 
are within the confidence range of attri t ion estimates for skipjack in the Solomon Islands 
reported by Argue and Kearney (1982). As expected, the catchability estimates for 
purse seine are higher than for pole-and-line. The catchability for pole-and-line is much 
higher than reported by Argue and Kearney (1982), but that is also expected because 
their catchabilities apply to the whole stock of the fishery whereas ours apply only to 
the population in a half-degree cell. 

To further evaluate our parameter estimates, it would be nice to estimate confi­
dence limits. The best way to do that would be a Monte-Carlo type exercise, requiring 
hundreds of fitting trials to stochastically generated data sets. We did generate 200 da ta 
sets using the multinomial probabilities (same as in Equation 7) from the best fitting 
outcome of the model (Trial # 6 , Table 2). To fit the model to all those data sets is 
unfeasable at the moment because each fitting run requires up to 10 hours to converge 
on parameter estimates. However, there is hope for considerable improvement in the 
efficiency of the fitting procedure. In the meantime, we have used the Monte-Carlo da ta 
sets in other ways (see below). 

To evaluate the performance of the model by comparing real and predicted tag 
returns is difficult because of the multidimensional nature of the data (tag set, gear 
type, month, location nor th /south , location east/west). Therefore we did a couple of 
comparisons between aggregates of data predicted by the model against aggregates of 
data used to fit the model. Figure 6 is the overall tag return rate with time at large, 
and Figure 7 is the mean distance from cell of release with time. The confidence bands 
were obtained by calculating 200 aggregate tag returns (Figure 6) or mean distance 
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(Figure 7) in each months-at-large category using the 200 Monte-Carlo da ta sets. We 
then took the 2.5% and 97.5% quantiles from each months-at-large category. 

In Figure 6, if we imagine that the confidence bounds were not there, it would 
appear that the model fit is best in the early months and deteriorates after about 10 
months at large. There is a natural tendency for this to be so in this type of logarithmic 
attri t ion plot. The model can legitimately predict fractional returns — even less than 
one return, but fractional returns cannot happen in reality, nor can zero returns be 
represented on the logarithmic plot. The effect is that the points tend to be far from 
the predicted line. This effect is accounted for in the confidence bounds, which broaden 
with time at large, and we can see that the worst fit of the model according to Figure 6 is 
actually in the first three months. t Note, however, that the deviations between observed 
and predicted values in this figure (and also in Figure 7) do not explicitly enter into the 
fitting process. It is the observed and predicted returns in individual spatio-temporal 
s t rata that go into the likelihood function. The confidence bounds in Figure 7 also 
broaden with time at large because of diminishing number of predicted tag returns. The 
worst fit in this case is in the first month where the actual mean distance of recovery 
was greater than predicted. 

Compared to the way most fishery models fit their data, the match between ob­
served and predicted shown in Figures 6 and 7 seems pretty good. To further evaluate 
the model, we calculated negative log likelihoods for each of the Monte-Carlo da ta sets. 
We found that the negative log likelihood from the real data falls far outside the fre­
quency distribution of such values from the Monte-Carlo data (Figure 8), which means 
that the the model is failing in some detail or other that seems to give difficulties in 
the first few months, judging from Figures 6 and 7. This test of fit may be overly harsh 
because additional considerations could imply that the Monte-Carlo distribution should 
be broader, for example if the tagged fish were not fully independent of each other. 
Nevertheless, all models fail somewhere, and it is desirable to examine their failings to 
help interpret results and perhaps to suggest improvements. 

To try to pinpoint further where the model deviates from the observed tag re­
turns or possibly to find a pat tern in its deviation, we calculated a deviance for each 
spatiotemporal s t ra tum containing effort given by: 

where i is the s t ra tum, and s is the tag set. Like the familiar square of residuals, the 
deviances are always positive whether the observed value is greater than or less than 
the predicted value, and the larger differences are heavily emphasized. Again, multidi-
mensionality is a problem in visualizing the results. Therefore we sorted the recovery 
s trata into months-at-large by distance-from-release categories. Examining the maxi­
mum deviance in each category in which the model predicted fewer than the observed 
number of returns, we found that the largest of these deviances are concentrated one to 
four cells distant from the release cell and in the early months following the month of 
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release (Figure 9). On the other hand, by far the largest deviance in which the model 
predicted more than the observed number of returns was in the first month and the cell 
of release (Figure 10). 

Par t of the problem here may have to do with the fact that the model presumes all 
tags are released at the beginning of the first month in the middle of the release cell, 
whereas in fact, tags are released throughout the first month and throughout the cell and 
in some haphazard distribution in time and space. That there is any distribution at all 
of release times during the release month means that not all releases are exposed to effort 
for the whole month, which could explain the over-estimate of returns in the release cell 
and month (Figure 10). A non-ideal distribution of releases is a very common problem 
in models built for analyzing tag .experiments. It is usually dealt with by ignoring the 
returns in the first one or two time periods. We have not tried that trick yet, bit it is 
on our list of things to do. 

We suspect that there is another problem which we may be able to deal with by 
adjusting the model. It appears, particularly from Figure 9, that to improve the fit, 
the model must quickly move more tagged fish from release cells to nearby cells with 
effort within the first few months in order to realize the observed number of returns in 
those cells. The only way the model has to do this is to increase the diffusivity, but in 
doing so, the diffusive loss to the numerous cells without effort will be increased which 
would cause the attri t ion rate to be too high. It may be that the rate of movement of 
fish within and near the archipelago (where most of the effort is located) is indeed very 
high, but that there is a reluctance to leave the vicinity of the islands. We could model 
this effect by adding a diffusion barrier around the archipelago that would lower the 
chances of fish straying away even though they have a propensity for rapid movement 
within the archipelago. This is also on our list of things to try. 

Lastly, other that using the model to address management questions (see next 
section), we hope to improve the efficiency of the fitting process to allow us to include 
more of the tag sets in the fitting process and to conduct Monte-Carlo type assessments 
of parameter confidence limits. 
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4. S tra tegy for U s e of t h e M o d e l t o Address M a n a g e m e n t Q u e s t i o n s 

Ultimately, we wish to be able to use this model to answer the four questions posed 
earlier in the report. To do this, we first need to devise a means of applying the model 
parameter values that were estimated for tagged skipjack to the untagged skipjack 
population in general. The best way to do this may be to use a simulation approach 
similar to that of Kleiber and Baker (1987) based on a model much like equation 1 but 
with recruitment added in. In simple terms, the procedure would be as follows: 

1. Determine a fishing pat tern (catch and effort, by gear type, by spatial grid) from 
the available fishery da ta that is typical of current conditions in the fishery. 

2. Establish the steady-state population conditions associated with this average fishing 
pattern, by allowing the model to proceed from reasonable start ing conditions, 
distributing the population according to FAD, island and harvest effects until an 
equilibribum pat tern is reached. It will be necessary to assume some reasonable 
pat tern of recrui tment , to the fishery. The real recruitment pa t te rn is of course 
unknown, but the effects of plausible alternative patterns could be investigated 
using the model. The scale of recruitment can be adjusted so that the catch in the 
model is roughly equivalent to the real average catch. Being in equilibrium, the 
model will be independent of the starting population; so we need not worry about 
precise estimation of start ing population levels. 

3. Having established equilibrium conditions, the system can then be per turbed by 
altering the fishing pat tern and the response of the population observed. 

Each of the four questions posed earlier might then be investigated as follows: 

1. The effect of the current purse seine fishery on pole-and-line catch rates could be 
estimated by setting purse seine effort in all spatial grids to zero and maintaining the 
current pat tern and level of pole-and-line effort. The difference between the original 
pole-and-line catch rates and their new equilibrium levels would be a measure of 
the effect of the current purse seine fishery on the pole-and-line fishery. 

2. An identical analysis could be performed to determine the effect of specified in­
creases in purse seine effort on pole-and-line catch rates. 

3. Similarly, various new pat terns of FAD deployment and numbers of FADs could 
be simulated, and the resulting effects on purse seine and pole-and-line catch rates 
observed. 

4. Various trial combinations of increased purse seine and pole-and-line effort could 
be simulated and the resulting effects on aggregate equilibrium population size 
over the study area examined. Development options could then be assessed, based 
on some criterion as to what constitutes an acceptable reduction in equilibrium 
population. 
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Table 1. Effort (boat-days), catch (metric tonnes), and catch per unit effort for purse-
seine and pole-and-line gear in the Solomon Islands. 

Year 

81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 

Purse-seine 
Effort Skipjack Yellowfin 

Catch CPUE Catch CPUE 

179 1982 11.1 1563 8.7 
87 1199 13.8 1236 14.2 

177 3044 17.2 2109 11.9 
189 3462 18.3 2959 15.7 
231 3902 16.9 2832 12.3 
317 5758 18.2 4198 13.2 
325 4037 12.4 3595 11.1 
307 7674 25.0 3816 12.4 

Pole-and-line 
Effort Skipjack Yellowfin 

Catch CPUE Catch CPUE 
4661 19541 4.19 209 .04 
5008 16417 3.28 227 .05 
5918 26912 4.55 575 .10 
6269 29488 4.70 336 .05 
7095 23680 3.34 337 .05 
7488 36139 4.83 565 .08 
6838 20556 3.01 1456 .21 
7483 28613 3.82 1189 .16 
6809 23187 3.41 774 .11 
5837 17418 2.98 1100 .19 
6829 35240 5.16 953 .14 

Table 2. Results of fitting model to two tag sets (see text), giving the salient conditions 
of each fit, the parameter values to which the procedure converged, and the negative 
log likelihood measure of goodness of fit. Parameter units are: D (cell-area m o _ l ) , 
s (unitless), fh ( # FADs), M ( m o ~ l ) , q (cell-area b o a t - d a y _ l m o ~ l ) . 

# 

1 
2 
3 
4 
5 
6 
7 

Conditions 
Subiter- Island Init. Tag 
ations Border Obst. Survival 

2 closed no 1.0 
3 closed no 1.0 
4 closed no 1.0 
4 closed no .9 
4 closed yes .9 
4 open yes .9 
4 open yes .9 

Estimated Parameters 
Seine P&L 

D s fh M q q 
2.5* .49 1.3 .14 .026 .00072 
3.4 .61 1.8 .13 .026 .00078 
3.1 .70 1.5 .13 .021 .00071 
3.1 .70 1.5 .13 .023 .00079 
3.1 .75 1.9 .13 .021 .00072 
3.2 .69 1.5 .12 .023 .00079 
2.7 — t —f .11 .037 .00089 

Goodness 
of Fit 

- l og (£ ) 
575.64 
587.85 
596.33 
597.05 
596.05 
595.66 
604.49 

* Converged on upper constraint. 
t FAD effect disabled. 
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Figure 1. Study area showing the Solomon Islands main group archipelago baseline 
(heavy line) and the location of FADs (solid circles). 
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Figure 2. Aggregate distribution of pole-and-line effort in the study area from mid-1989 
through 1991. 
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Figure 3. Aggregate distribution of purse-seine effort in the study area from mid-1989 
through 1991. 
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Figure 4. Distribution of tag releases in Solomon Islands, 1989-1990. 
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Figure 5. FAD effect as function of number of FADs in a cell for FAD parameters from 
the best fitting trial (#6 in Table 2). Dotted line is saturation effect of FADs. 
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Figure 6. Aggregate tag attrition. Solid line is expected aggregate returns per month 
predicted by the model with best fitting parameters. Points are the observed aggregate 
returns for the two tag sets used in fitting the model. Dotted lines are 95% Monte-
Carlo confidence bounds (see text). The lowest levels of the lower confidence bounds 
are actually zero. 
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Figure 7. Mean distance with time. Solid line is mean distance of recoveries from 
release point predicted by mode with best fitting parameters. Points are the observed 
mean distance of recoveries for the two tags sets used in fitting the model. Dotted lines 
are 95% Monte-Carlo confidence bounds (see text). 
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Figure 8. Monte-Carlo distribution of negative log likelihoods (see text). The level 
marked "perfect" is negative log likelihood for a hypothetical, and impossible, data set 
identical to the best fitting outcome of the model — impossible because it contains 
fractional returns. The level marked "real" is the negative log likelihood for the real tag 
return data. 
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Figure 9. Maxima of deviances in categories of distance from cell of release (measured 
in cell widths of 30 nm) and months at large, and for spatiotemporal strata in which 
the best fitting outcome of the model predicts fewer than the real number of returns. 
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Figure 10. Maxima of deviances in categories of distance from cell of release (measured 
in cell widths of 30 nm) and months at large, and for spatiotemporal strata in which 
the best fitting outcome of the model predicts greater than the real number of returns. 
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