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Global warming is primarily stored
in the ocean



The world’s oceans have taken up 91 per cent
of the extra energy stored by the planet as a
result of enhanced greenhouse gas
concentrations.

- CSIRO/BOM State of the Climate (2022)
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The Earth is gaining heat due to
increases in greenhouse gases in
the atmosphere. Most of this heat
30 is being taken up by oceans.
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Estimated trends in

Change in ocean heat content (102 joules)

global heat content are
-3 more certain after 1970.
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Estimated change in ocean heat content globally averaged over the full ocean depth,

from 1960-2021. Shading provides an indication of the confidence range of the estimates.
The measurements contributing to the early part of the record, before 1970, are sparse and
trends estimated over this period are small compared to the confidence range and hence are
considered less reliable. Source: CSIRO, GEOMAR (Germany) and National Oceanographic
Centre (UK)
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Table 2.1: Assessment of observed changes in large-scale indicators of mean climate across climate system components, and their attribution to human
influence. The colour coding indicates the assessed confidence in / likelihood™® of the observed change and the human contribution as a driver or main driver (specified in that case)

where available (see colour key). Otherwise, explanatory text is provided. {WG/ Table T5. 1}

oL Observed change Human contribution
Change in indicator assessment assessment

Atmosphere ikely range of human contribution _
and water cycle  Warming of global mean surface air temperature since 1850-1900 %%9 b ‘%g:rcggwaiﬁfgﬂ{lﬁfge_ ,gbél
Warming of the troposphere since 1979 _
Cooling of the lower stratosphere since the mid-20th century _ Main driver 1979 - mid-1990s

Large-scale precipitation and upper troposphere humidity changes since 1979

Expansion of the zonal mean Hadlex Circulation since the 1980s

Ocean ) ) L
Ocean heat content increase since the 1970s Main driver
Synthesis - : . . N
y Warming of the global climate system since preindustrial times

Key 1 ] |

medium  likely / high  very likely  extremely virtually fact
confidence  confidence likely certain

IPCC, 2023: Sections. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, Il and Ill to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
[Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 35-115, doi: 10.59327/IPCC/AR6-9789291691647



The ocean does not warm evenly. Some regions

are warming several times faster than the
global mean.

Regionally, ocean warming can vary

substantially from year to year due to climate
phenomena such as ENSO.

- CSIRO/BOM State of the Climate (2022)
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The rate at which the oceans are taking up heat
has increased over recent decades.

- CSIRO/BOM State of the Climate (2022)
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Warming trends increasingly dominate global ocean — Johnson & Lyman 2020 - Nature CLimate Change | VOL 10 | Aug 2020 | 757-761 |
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The global ocean heat content, measured from
the ocean’s surface to a depth of 2,000 meters,

continued to increase and reached new record
highs in 2022.

- NOAA State of the Climate in 2022



Average sea surface temperature in the
Australian region has warmed by 1.05 °C
since 1900, with eight of the 10 warmest
years on record occurring since 2010.

- CSIRO / BOM State of the Climate (2022)
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DAILY SEA SURFACE TEMPERATURE
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Warming of the ocean has contributed to
longer and more frequent marine heatwaves.
These have impacts on marine ecosystems,
habitats, and species.

- CSIRO/BOM State of the Climate (2022)



Marine Heat Waves (MHW)



Marine heatwaves are periods when ocean

temperatures are in the upper range of
historical baseline conditions for at least five

days.

- CSIRO/BOM State of the Climate (2022)
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Oceanography 31(2):162—173, https://doi.org/10.5670/oceanog.2018.205.
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FIGURE 2. Categorization schematic for marine heatwaves (MHWSs) showing the observed tempera-
ture time series (dashed line), the long-term regional climatology (bold line), and the 90" percentile
climatology (thin line). Multiples of the 90t percentile difference (2x twice, 3x three times, etc.) from
the mean climatology value define each of the categories |-V, with corresponding descriptors from
moderate to extreme. This example peaked as a Category IV (extreme) MHW.



Climate models project more frequent,
extensive, intense and longer-lasting marine
heatwaves in the future.

The intensification of marine heatwaves is

much greater under high greenhouse gas
emission scenarios.

- CSIRO / BOM State of the Climate (2022)
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Keeping pace with marine heatwaves — Holbrook et al 2020 - Nature Reviews Earth & Environment
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@ ¢ Change in MHW days (2031-2060 minus 1961-1990)
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% AS OCEANS WARM, MARINE COLD SPELLS ARE
DISAPPEARING

 Marine cold spells are cold versions of heat
waves: periods of exceptionally cold water,
able to hurt or help the ecosystems they hit.

 Recent studies have shown that as the
atmosphere and oceans warm, marine cold
spells are becoming less intense and less
frequent overall.

Understanding the Changing Nature of Marine Cold-Spells (Wang et al 2022) & AGU (2022) - https://news.agu.org/press-release/as-oceans-warm-marine-cold-spells-are-disappearing,



https://news.agu.org/press-release/as-oceans-warm-marine-cold-spells-are-disappearing/

What does this mean for
Pacific Community?
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* MHW are already impacting Pacific Island communities.
* Projected increase in MHW metrics in tropical central-
western Pacific.

* Poses threats to tropical central-western Pacific Island

nation food security.
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Models of possible futures - SSP1-2.6 & SSP5-8.5
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Model bias: completeness,
correctness, & resolution



& Ocean models simulate current movement and mixing, and biogeochemistry, vital
since the ocean is the dominant reservoir of heat and carbon in the climate system.
But models can have systematic errors (bias) between the simulations and the actual
observations of ocean conditions. We can help address model bias through:

 Completeness: models may not include all relevant physical, chemical, or
biological processes occurring in the ocean. The omission of these processes can
lead to biases in the model outputs. For example, the effects of certain
biogeochemical cycles, deep ocean currents, and ice sheets might be
inadequately represented which can be improved.

* Correctness: For example, improving parametrizations such as those being used
to represent very small-scale turbulence.

* Resolution: The spatial and temporal resolution of models can also lead to biases.
Ocean models divide the ocean into a grid, and processes occurring at scales
smaller than the grid size cannot be resolved. This can lead to inaccuracies in
representing ocean currents, eddies, and other small-scale features.

GFDL— NOAA : https://www.gfdl.noaa.gov/climate-modeling/



https://www.gfdl.noaa.gov/climate-modeling/

Scale - time & space

The multi-scale

nature of connected
ocean processes is a

key concept.
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“Parameterisation”

Simplified
representations of
very complex or
small-scale
processes in
climate models.

Time scale (s)

For example: how
heat is transferred
in the ocean on
small scales.

Horizontal space length scale (m)
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“Parameterisation”

Simplified
representations of
very complex or
small-scale
processes in
climate models.

For example: how
heat is transferred
in the ocean on
small scales.
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Limitations:
Gaps in observation of ocean “truth”
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World Ocean Atlas 2023 Climatology, Decade 1995-2004
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World Ocean Atlas 2023 Climatology, Decade 2005-2014
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The network of national capabilities observing Australia’s interconnected oceans and their
influence on our climate. These programs are undertaken by the Bureau of Meteorology,
CSIRO, and other partners such as the Integrated Marine Observing System (IMOS),

The Australian Institute of Marine Science (AIMS), and universities.
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CSIRO Climate Science Centre
Dr Thomas Moore
Ocean Data Scientist

thomas.moore@csiro.au

Australia’s National Science Agency
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Eventattribution isnotready fora major roleinloss
and damage -

Andrew D. King@, Michael R. Grose: Joyce Kimutai, 1zidine Pinto & Luke J. Harrington
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Lossand damage fundsare intended to support low-income regions experiencing

impacts of human-caused climate change. Currently, event attribution should only play
alimited role in determining loss and damage spending, put thisrole could grow as the

field advances.
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